Spaces:
Sleeping
Sleeping
File size: 14,611 Bytes
5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 5b6a83c 437e805 9ae59a2 437e805 5b6a83c a41124a 5b6a83c a41124a 5b6a83c a41124a 5b6a83c 437e805 5b6a83c a41124a 5b6a83c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import gradio as gr
import zipfile
import shutil
from pathlib import Path
import json
import os
import traceback
import gc
import torch
import spaces
# Import your modules
from engine import compute_mapss_measures
from models import get_model_config, cleanup_all_models
from config import DEFAULT_ALPHA
from utils import clear_gpu_memory
def process_audio_files_cpu(zip_file, model_name, layer, alpha):
"""Process uploaded ZIP file containing audio mixtures - CPU part."""
if zip_file is None:
return None, "Please upload a ZIP file", None
try:
# Use a fixed extraction path
extract_path = Path("/tmp/mapss_extract")
if extract_path.exists():
shutil.rmtree(extract_path)
extract_path.mkdir(parents=True)
# Extract ZIP
with zipfile.ZipFile(zip_file.name, 'r') as zip_ref:
zip_ref.extractall(extract_path)
# Find references and outputs directories
refs_dir = None
outs_dir = None
for item in extract_path.iterdir():
if item.is_dir():
if item.name.lower() in ['references', 'refs', 'reference']:
refs_dir = item
elif item.name.lower() in ['outputs', 'outs', 'output', 'separated']:
outs_dir = item
# Check one level deeper if not found
if refs_dir is None or outs_dir is None:
for item in extract_path.iterdir():
if item.is_dir():
for subitem in item.iterdir():
if subitem.is_dir():
if subitem.name.lower() in ['references', 'refs', 'reference']:
refs_dir = subitem
elif subitem.name.lower() in ['outputs', 'outs', 'output', 'separated']:
outs_dir = subitem
if refs_dir is None or outs_dir is None:
return None, "Could not find 'references' and 'outputs' directories in the ZIP file", None
# Get audio files
ref_files = sorted([f for f in refs_dir.glob("*.wav")])
out_files = sorted([f for f in outs_dir.glob("*.wav")])
if len(ref_files) == 0:
return None, "No reference WAV files found", None
if len(out_files) == 0:
return None, "No output WAV files found", None
if len(ref_files) != len(out_files):
return None, f"Number of reference files ({len(ref_files)}) must match number of output files ({len(out_files)}). Files must be in the same order.", None
# Create manifest
manifest = [{
"mixture_id": "uploaded_mixture",
"references": [str(f) for f in ref_files],
"systems": {
"uploaded_system": [str(f) for f in out_files]
}
}]
# Validate model
allowed_models = set(get_model_config(0).keys())
if model_name not in allowed_models:
return None, f"Invalid model. Allowed: {', '.join(sorted(allowed_models))}", None
# Set layer
if model_name == "raw":
layer_final = 0
else:
model_defaults = {
"wavlm": 24, "wav2vec2": 24, "hubert": 24,
"wavlm_base": 12, "wav2vec2_base": 12, "hubert_base": 12,
"wav2vec2_xlsr": 24
}
layer_final = layer if layer is not None else model_defaults.get(model_name, 12)
# Return preprocessed data for GPU processing
return manifest, layer_final, alpha
except Exception as e:
error_msg = f"Error in preprocessing: {str(e)}\n{traceback.format_exc()}"
return None, error_msg, None
@spaces.GPU(duration=300)
def process_audio_files_gpu(manifest, model_name, layer_final, alpha):
"""GPU processing part - only called when GPU is allocated."""
if manifest is None:
return None, "Invalid input data"
try:
# Force single GPU mode in Spaces environment
# The spaces decorator handles GPU allocation
max_gpus = 1 if torch.cuda.is_available() else 0
# Run experiment with forced single GPU
results_dir = compute_mapss_measures(
models=[model_name],
mixtures=manifest,
layer=layer_final,
alpha=alpha,
verbose=True,
max_gpus=max_gpus, # Force single GPU
add_ci=False # Disable CI for faster processing in demo
)
# Create output ZIP at a fixed location
output_zip = Path("/tmp/mapss_results.zip")
with zipfile.ZipFile(output_zip, 'w') as zipf:
results_path = Path(results_dir)
files_added = 0
# Add all files from results
for file_path in results_path.rglob("*"):
if file_path.is_file():
arcname = str(file_path.relative_to(results_path.parent))
zipf.write(file_path, arcname)
files_added += 1
if output_zip.exists() and files_added > 0:
return str(output_zip), f"Processing completed! Created ZIP with {files_added} files. Note: Output files must be in the same order as reference files."
else:
return None, f"Processing completed but no output files were generated. Check if embeddings were computed."
except Exception as e:
error_msg = f"Error in GPU processing: {str(e)}\n{traceback.format_exc()}"
return None, error_msg
finally:
# Cleanup is critical in Spaces environment
cleanup_all_models()
clear_gpu_memory()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def process_audio_files(zip_file, model_name, layer, alpha):
"""Main processing function that combines CPU and GPU parts."""
# First, do CPU preprocessing
manifest, layer_final, alpha_processed = process_audio_files_cpu(
zip_file, model_name, layer, alpha
)
if manifest is None:
return None, layer_final # layer_final contains error message in this case
# Then do GPU processing
return process_audio_files_gpu(manifest, model_name, layer_final, alpha_processed)
def create_interface():
with gr.Blocks(title="MAPSS - Multi-source Audio Perceptual Separation Scores") as demo:
gr.Markdown("""
# MAPSS: Manifold-based Assessment of Perceptual Source Separation
Granular evaluation of speech and music source separation with the MAPSS measures:
- **Perceptual Matching (PM)**: Measures how closely an output perceptually aligns with its reference. Range: 0-1, higher is better.
- **Perceptual Similarity (PS)**: Measures how well an output is separated from its interfering references. Range: 0-1, higher is better.
## β οΈ IMPORTANT: File Order Requirements
**Output files MUST be in the same order as reference files!**
- If references are: `speaker1.wav`, `speaker2.wav`, `speaker3.wav`
- Then outputs must be: `output1.wav`, `output2.wav`, `output3.wav`
- Where `output1` corresponds to `speaker1`, `output2` to `speaker2`, etc.
## Input Format
Upload a ZIP file containing:
```
your_mixture.zip
βββ references/ # Original clean sources
β βββ speaker1.wav
β βββ speaker2.wav
β βββ ...
βββ outputs/ # Separated outputs (SAME ORDER as references)
βββ separated1.wav # Must correspond to speaker1.wav
βββ separated2.wav # Must correspond to speaker2.wav
βββ ...
```
### Audio Requirements
- Format: .wav files
- Sample rate: Any (automatically resampled to 16kHz)
- Channels: Mono or stereo (converted to mono)
- **Number of files: Equal number of references and outputs**
- **Order: Output files must be in the same order as reference files**
## Output Format
The tool generates a ZIP file containing:
- `ps_scores_{model}.csv`: PS scores for each source over time
- `pm_scores_{model}.csv`: PM scores for each source over time
- `params.json`: Parameters used
- `manifest_canonical.json`: File mapping and processing details
### Score Interpretation
- **Valid scores**: Only computed when at least 2 speakers are active in a frame
- **NaN values**: Appear for non-active speakers, or when fewer than 2 speakers are active in the frame.
- **Time resolution**: 20ms frames
## Available Models
| Model | Description | Default Layer | Use Case |
|-------|-------------|---------------|----------|
| `raw` | Raw waveform features | N/A | Baseline comparison |
| `wavlm` | WavLM Large | 24 | Strong performance |
| `wav2vec2` | Wav2Vec2 Large | 24 | Best overall performance |
| `hubert` | HuBERT Large | 24 | |
| `wavlm_base` | WavLM Base | 12 | |
| `wav2vec2_base` | Wav2Vec2 Base | 12 | Faster, good quality |
| `hubert_base` | HuBERT Base | 12 | |
| `wav2vec2_xlsr` | Wav2Vec2 XLSR-53 | 24 | Multilingual |
## Parameters
- **Model**: Select the embedding model for feature extraction
- **Layer**: Which transformer layer to use (auto-selected by default)
- **Alpha**: Diffusion maps parameter (0.0-1.0, default: 1.0)
- 0.0 = No normalization
- 1.0 = Full normalization (recommended)
## Processing Notes
- The system automatically detects which speakers are active in each frame
- PS/PM scores are only computed between active speakers
- Processing time scales with number of sources and audio length
- GPU acceleration is automatically used when available
- **Note**: This Hugging Face Space runs with a single GPU allocation
## Citation
If you use MAPSS, please cite:
```bibtex
@article{ivry2025mapss,
title={MAPSS: Manifold-based Assessment of Perceptual Source Separation},
author={Ivry, Amir and Cornell, Samuele and Watanabe, Shinji},
journal={arXiv preprint arXiv:2509.09212},
year={2025}
}
```
## License
Code: MIT License
Paper: CC-BY-4.0
## Support
For issues, questions, or contributions, please visit the [GitHub repository](https://github.com/amir-ivry/MAPSS-measures).
""")
with gr.Row():
with gr.Column():
file_input = gr.File(
label="Upload ZIP file with audio mixtures",
file_types=[".zip"],
type="filepath"
)
model_dropdown = gr.Dropdown(
choices=["raw", "wavlm", "wav2vec2", "hubert",
"wavlm_base", "wav2vec2_base", "hubert_base",
"wav2vec2_xlsr"],
value="wav2vec2_base",
label="Select embedding model"
)
layer_slider = gr.Slider(
minimum=0,
maximum=12,
step=1,
value=12,
label="Layer (automatically set to model default)",
interactive=True
)
alpha_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=DEFAULT_ALPHA,
label="Diffusion maps alpha parameter"
)
def update_layer_slider(model_name):
"""Update layer slider based on selected model"""
model_configs = {
"raw": {"maximum": 0, "value": 0, "interactive": False},
"wavlm": {"maximum": 24, "value": 24, "interactive": True},
"wav2vec2": {"maximum": 24, "value": 24, "interactive": True},
"hubert": {"maximum": 24, "value": 24, "interactive": True},
"wav2vec2_xlsr": {"maximum": 24, "value": 24, "interactive": True},
"wavlm_base": {"maximum": 12, "value": 12, "interactive": True},
"wav2vec2_base": {"maximum": 12, "value": 12, "interactive": True},
"hubert_base": {"maximum": 12, "value": 12, "interactive": True}
}
config = model_configs.get(model_name, {"maximum": 12, "value": 12, "interactive": True})
return gr.Slider(
minimum=0,
maximum=config["maximum"],
value=config["value"],
step=1,
label=f"Layer (max: {config['maximum']}, default: {config['value']})" if config["interactive"] else "Layer (not applicable for raw features)",
interactive=config["interactive"]
)
model_dropdown.change(
fn=update_layer_slider,
inputs=[model_dropdown],
outputs=[layer_slider]
)
process_btn = gr.Button("Process Audio Files", variant="primary")
with gr.Column():
output_file = gr.File(
label="Download Results (ZIP)",
type="filepath"
)
status_text = gr.Textbox(
label="Status",
lines=3,
max_lines=10
)
process_btn.click(
fn=process_audio_files,
inputs=[file_input, model_dropdown, layer_slider, alpha_slider],
outputs=[output_file, status_text]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch() |