Update main.py
Browse files
main.py
CHANGED
|
@@ -4,8 +4,7 @@ import os
|
|
| 4 |
import secrets
|
| 5 |
import string
|
| 6 |
import time
|
| 7 |
-
from typing import List, Optional, Union
|
| 8 |
-
|
| 9 |
import httpx
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
from fastapi import FastAPI
|
|
@@ -13,9 +12,7 @@ from fastapi.responses import JSONResponse, StreamingResponse
|
|
| 13 |
from pydantic import BaseModel
|
| 14 |
|
| 15 |
# --- Configuration ---
|
| 16 |
-
|
| 17 |
load_dotenv()
|
| 18 |
-
|
| 19 |
# Env variables for external services
|
| 20 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
| 21 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
|
@@ -30,18 +27,15 @@ AVAILABLE_MODELS = [
|
|
| 30 |
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
| 31 |
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
| 32 |
]
|
| 33 |
-
|
| 34 |
MODEL_ALIASES = {}
|
| 35 |
|
| 36 |
# --- FastAPI Application ---
|
| 37 |
-
|
| 38 |
app = FastAPI(
|
| 39 |
title="OpenAI Compatible API",
|
| 40 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
| 41 |
version="1.0.0"
|
| 42 |
)
|
| 43 |
|
| 44 |
-
|
| 45 |
# --- Helper Function for Random ID Generation ---
|
| 46 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
| 47 |
"""
|
|
@@ -51,17 +45,13 @@ def generate_random_id(prefix: str, length: int = 29) -> str:
|
|
| 51 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
| 52 |
return f"{prefix}{random_part}"
|
| 53 |
|
| 54 |
-
|
| 55 |
# === API Endpoints ===
|
| 56 |
-
|
| 57 |
@app.get("/v1/models")
|
| 58 |
async def list_models():
|
| 59 |
"""Lists the available models."""
|
| 60 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
| 61 |
|
| 62 |
-
|
| 63 |
# === Chat Completion ===
|
| 64 |
-
|
| 65 |
class Message(BaseModel):
|
| 66 |
role: str
|
| 67 |
content: str
|
|
@@ -70,6 +60,7 @@ class ChatRequest(BaseModel):
|
|
| 70 |
messages: List[Message]
|
| 71 |
model: str
|
| 72 |
stream: Optional[bool] = False
|
|
|
|
| 73 |
|
| 74 |
@app.post("/v1/chat/completions")
|
| 75 |
async def chat_completion(request: ChatRequest):
|
|
@@ -85,17 +76,44 @@ async def chat_completion(request: ChatRequest):
|
|
| 85 |
'referer': 'https://www.chatwithmono.xyz/',
|
| 86 |
'user-agent': 'Mozilla/5.0',
|
| 87 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
payload = {
|
| 89 |
-
"messages": [
|
| 90 |
"model": model_id
|
| 91 |
}
|
| 92 |
-
|
| 93 |
if request.stream:
|
| 94 |
async def event_stream():
|
| 95 |
created = int(time.time())
|
| 96 |
is_first_chunk = True
|
| 97 |
usage_info = None
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
try:
|
| 100 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 101 |
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
|
@@ -105,41 +123,114 @@ async def chat_completion(request: ChatRequest):
|
|
| 105 |
if line.startswith("0:"):
|
| 106 |
try:
|
| 107 |
content_piece = json.loads(line[2:])
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
"
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
except json.JSONDecodeError: continue
|
| 120 |
elif line.startswith(("e:", "d:")):
|
| 121 |
try:
|
| 122 |
usage_info = json.loads(line[2:]).get("usage")
|
| 123 |
except (json.JSONDecodeError, AttributeError): pass
|
| 124 |
break
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
except httpx.HTTPStatusError as e:
|
| 144 |
error_content = {
|
| 145 |
"error": {
|
|
@@ -153,6 +244,7 @@ async def chat_completion(request: ChatRequest):
|
|
| 153 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
| 154 |
else: # Non-streaming
|
| 155 |
assistant_response, usage_info = "", {}
|
|
|
|
| 156 |
try:
|
| 157 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 158 |
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
|
@@ -164,9 +256,15 @@ async def chat_completion(request: ChatRequest):
|
|
| 164 |
elif chunk.startswith(("e:", "d:")):
|
| 165 |
try: usage_info = json.loads(chunk[2:]).get("usage", {})
|
| 166 |
except: continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
return JSONResponse(content={
|
| 168 |
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
| 169 |
-
"choices": [{"index": 0, "message": {"role": "assistant", "content": assistant_response}, "finish_reason": "stop"}],
|
| 170 |
"usage": {
|
| 171 |
"prompt_tokens": usage_info.get("promptTokens", 0),
|
| 172 |
"completion_tokens": usage_info.get("completionTokens", 0),
|
|
@@ -178,7 +276,6 @@ async def chat_completion(request: ChatRequest):
|
|
| 178 |
|
| 179 |
|
| 180 |
# === Image Generation ===
|
| 181 |
-
|
| 182 |
class ImageGenerationRequest(BaseModel):
|
| 183 |
prompt: str
|
| 184 |
aspect_ratio: Optional[str] = "1:1"
|
|
@@ -224,9 +321,7 @@ async def generate_images(request: ImageGenerationRequest):
|
|
| 224 |
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
| 225 |
return {"created": int(time.time()), "data": results}
|
| 226 |
|
| 227 |
-
|
| 228 |
# === Moderation Endpoint ===
|
| 229 |
-
|
| 230 |
class ModerationRequest(BaseModel):
|
| 231 |
input: Union[str, List[str]]
|
| 232 |
model: Optional[str] = "text-moderation-stable"
|
|
@@ -240,14 +335,12 @@ async def create_moderation(request: ModerationRequest):
|
|
| 240 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
| 241 |
if not input_texts:
|
| 242 |
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string.", "type": "invalid_request_error"}})
|
| 243 |
-
|
| 244 |
moderation_url = "https://www.chatwithmono.xyz/api/moderation"
|
| 245 |
headers = {
|
| 246 |
'Content-Type': 'application/json',
|
| 247 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
| 248 |
'Referer': 'https://www.chatwithmono.xyz/',
|
| 249 |
}
|
| 250 |
-
|
| 251 |
results = []
|
| 252 |
try:
|
| 253 |
async with httpx.AsyncClient(timeout=30) as client:
|
|
@@ -256,7 +349,6 @@ async def create_moderation(request: ModerationRequest):
|
|
| 256 |
resp = await client.post(moderation_url, headers=headers, json=payload)
|
| 257 |
resp.raise_for_status()
|
| 258 |
upstream_data = resp.json()
|
| 259 |
-
|
| 260 |
# --- Transform upstream response to OpenAI format ---
|
| 261 |
upstream_categories = upstream_data.get("categories", {})
|
| 262 |
openai_categories = {
|
|
@@ -268,21 +360,19 @@ async def create_moderation(request: ModerationRequest):
|
|
| 268 |
}
|
| 269 |
category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
|
| 270 |
flagged = upstream_data.get("overall_sentiment") == "flagged"
|
| 271 |
-
|
| 272 |
result_item = {
|
| 273 |
"flagged": flagged,
|
| 274 |
"categories": openai_categories,
|
| 275 |
"category_scores": category_scores,
|
| 276 |
}
|
| 277 |
-
|
| 278 |
# --- NEW: Conditionally add the 'reason' field ---
|
| 279 |
# This is a custom extension to the OpenAI spec to provide more detail.
|
| 280 |
reason = upstream_data.get("reason")
|
| 281 |
if reason:
|
| 282 |
result_item["reason"] = reason
|
| 283 |
-
|
| 284 |
-
results.append(result_item)
|
| 285 |
|
|
|
|
| 286 |
except httpx.HTTPStatusError as e:
|
| 287 |
return JSONResponse(
|
| 288 |
status_code=502, # Bad Gateway
|
|
@@ -290,7 +380,6 @@ async def create_moderation(request: ModerationRequest):
|
|
| 290 |
)
|
| 291 |
except Exception as e:
|
| 292 |
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "type": "internal_error", "details": str(e)}})
|
| 293 |
-
|
| 294 |
# Build the final OpenAI-compatible response
|
| 295 |
final_response = {
|
| 296 |
"id": generate_random_id("modr-"),
|
|
@@ -299,9 +388,7 @@ async def create_moderation(request: ModerationRequest):
|
|
| 299 |
}
|
| 300 |
return JSONResponse(content=final_response)
|
| 301 |
|
| 302 |
-
|
| 303 |
# --- Main Execution ---
|
| 304 |
-
|
| 305 |
if __name__ == "__main__":
|
| 306 |
import uvicorn
|
| 307 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
| 4 |
import secrets
|
| 5 |
import string
|
| 6 |
import time
|
| 7 |
+
from typing import List, Optional, Union, Any
|
|
|
|
| 8 |
import httpx
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
from fastapi import FastAPI
|
|
|
|
| 12 |
from pydantic import BaseModel
|
| 13 |
|
| 14 |
# --- Configuration ---
|
|
|
|
| 15 |
load_dotenv()
|
|
|
|
| 16 |
# Env variables for external services
|
| 17 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
| 18 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
|
|
|
| 27 |
{"id": "dall-e-3", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
| 28 |
{"id": "text-moderation-stable", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
| 29 |
]
|
|
|
|
| 30 |
MODEL_ALIASES = {}
|
| 31 |
|
| 32 |
# --- FastAPI Application ---
|
|
|
|
| 33 |
app = FastAPI(
|
| 34 |
title="OpenAI Compatible API",
|
| 35 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
| 36 |
version="1.0.0"
|
| 37 |
)
|
| 38 |
|
|
|
|
| 39 |
# --- Helper Function for Random ID Generation ---
|
| 40 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
| 41 |
"""
|
|
|
|
| 45 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
| 46 |
return f"{prefix}{random_part}"
|
| 47 |
|
|
|
|
| 48 |
# === API Endpoints ===
|
|
|
|
| 49 |
@app.get("/v1/models")
|
| 50 |
async def list_models():
|
| 51 |
"""Lists the available models."""
|
| 52 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
| 53 |
|
|
|
|
| 54 |
# === Chat Completion ===
|
|
|
|
| 55 |
class Message(BaseModel):
|
| 56 |
role: str
|
| 57 |
content: str
|
|
|
|
| 60 |
messages: List[Message]
|
| 61 |
model: str
|
| 62 |
stream: Optional[bool] = False
|
| 63 |
+
tools: Optional[Any] = None
|
| 64 |
|
| 65 |
@app.post("/v1/chat/completions")
|
| 66 |
async def chat_completion(request: ChatRequest):
|
|
|
|
| 76 |
'referer': 'https://www.chatwithmono.xyz/',
|
| 77 |
'user-agent': 'Mozilla/5.0',
|
| 78 |
}
|
| 79 |
+
if request.tools:
|
| 80 |
+
# Handle tool by giving in system prompt.
|
| 81 |
+
# Tool call must be encoded in <tool_call><tool_call> XML tag.
|
| 82 |
+
tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
| 83 |
+
Tools:
|
| 84 |
+
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
| 85 |
+
|
| 86 |
+
Response Format for tool call:
|
| 87 |
+
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
|
| 88 |
+
<tool_call>
|
| 89 |
+
{{"name": <function-name>, "arguments": <args-json-object>}}
|
| 90 |
+
</tool_call>
|
| 91 |
+
|
| 92 |
+
Example of tool calling:
|
| 93 |
+
<tool_call>
|
| 94 |
+
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
|
| 95 |
+
</tool_call>
|
| 96 |
+
|
| 97 |
+
Using tools is recommended.
|
| 98 |
+
"""
|
| 99 |
+
if request.messages[0].role == "system":
|
| 100 |
+
request.messages[0].content += "\n\n" + tool_prompt
|
| 101 |
+
else:
|
| 102 |
+
request.messages.insert(0, {"role": "system", "content": tool_prompt})
|
| 103 |
+
request_data = request.model_dump(exclude_unset=True)
|
| 104 |
+
|
| 105 |
payload = {
|
| 106 |
+
"messages": request_data["messages"],
|
| 107 |
"model": model_id
|
| 108 |
}
|
|
|
|
| 109 |
if request.stream:
|
| 110 |
async def event_stream():
|
| 111 |
created = int(time.time())
|
| 112 |
is_first_chunk = True
|
| 113 |
usage_info = None
|
| 114 |
+
is_tool_call = False
|
| 115 |
+
chunks_buffer = []
|
| 116 |
+
max_initial_chunks = 4 # Number of initial chunks to buffer
|
| 117 |
try:
|
| 118 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 119 |
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
|
|
|
| 123 |
if line.startswith("0:"):
|
| 124 |
try:
|
| 125 |
content_piece = json.loads(line[2:])
|
| 126 |
+
# print(content_piece)
|
| 127 |
+
# Buffer the first few chunks
|
| 128 |
+
if len(chunks_buffer) < max_initial_chunks:
|
| 129 |
+
chunks_buffer.append(content_piece)
|
| 130 |
+
continue
|
| 131 |
+
# Process the buffered chunks if we haven't already
|
| 132 |
+
if chunks_buffer and not is_tool_call:
|
| 133 |
+
full_buffer = ''.join(chunks_buffer)
|
| 134 |
+
if "<tool_call>" in full_buffer:
|
| 135 |
+
print("Tool call detected")
|
| 136 |
+
is_tool_call = True
|
| 137 |
+
else:
|
| 138 |
+
# No tool call, send buffered chunks as regular content
|
| 139 |
+
delta = {"content": full_buffer, "tool_calls": None}
|
| 140 |
+
if is_first_chunk:
|
| 141 |
+
delta["role"] = "assistant"
|
| 142 |
+
is_first_chunk = False
|
| 143 |
+
chunk_data = {
|
| 144 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
| 145 |
+
"model": model_id,
|
| 146 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
| 147 |
+
"usage": None
|
| 148 |
+
}
|
| 149 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
| 150 |
+
|
| 151 |
+
# Process the current chunk
|
| 152 |
+
if is_tool_call:
|
| 153 |
+
chunks_buffer.append(content_piece)
|
| 154 |
+
|
| 155 |
+
full_buffer = ''.join(chunks_buffer)
|
| 156 |
+
|
| 157 |
+
if "</tool_call>" in full_buffer:
|
| 158 |
+
print("Tool call End detected")
|
| 159 |
+
# Process tool call in the current chunk
|
| 160 |
+
tool_call_str = full_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
|
| 161 |
+
tool_call_json = json.loads(tool_call_str.strip())
|
| 162 |
+
delta = {
|
| 163 |
+
"content": None,
|
| 164 |
+
"tool_calls": [{
|
| 165 |
+
"index": 0,
|
| 166 |
+
"id": generate_random_id("call_"),
|
| 167 |
+
"type": "function",
|
| 168 |
+
"function": {
|
| 169 |
+
"name": tool_call_json["name"],
|
| 170 |
+
"arguments": json.dumps(tool_call_json["parameters"])
|
| 171 |
+
}
|
| 172 |
+
}]
|
| 173 |
+
}
|
| 174 |
+
chunk_data = {
|
| 175 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
| 176 |
+
"model": model_id,
|
| 177 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
| 178 |
+
"usage": None
|
| 179 |
+
}
|
| 180 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
| 181 |
+
else:
|
| 182 |
+
continue
|
| 183 |
+
else:
|
| 184 |
+
# Regular content
|
| 185 |
+
delta = {"content": content_piece, "tool_calls": None}
|
| 186 |
+
if is_first_chunk:
|
| 187 |
+
delta["role"] = "assistant"
|
| 188 |
+
is_first_chunk = False
|
| 189 |
+
chunk_data = {
|
| 190 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
| 191 |
+
"model": model_id,
|
| 192 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
| 193 |
+
"usage": None
|
| 194 |
+
}
|
| 195 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
| 196 |
except json.JSONDecodeError: continue
|
| 197 |
elif line.startswith(("e:", "d:")):
|
| 198 |
try:
|
| 199 |
usage_info = json.loads(line[2:]).get("usage")
|
| 200 |
except (json.JSONDecodeError, AttributeError): pass
|
| 201 |
break
|
| 202 |
+
# Handle any remaining buffer content
|
| 203 |
+
if chunks_buffer and not is_tool_call:
|
| 204 |
+
full_buffer = ''.join(chunks_buffer)
|
| 205 |
+
delta = {"content": full_buffer, "tool_calls": None}
|
| 206 |
+
if is_first_chunk:
|
| 207 |
+
delta["role"] = "assistant"
|
| 208 |
+
is_first_chunk = False
|
| 209 |
+
chunk_data = {
|
| 210 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
| 211 |
+
"model": model_id,
|
| 212 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
| 213 |
+
"usage": None
|
| 214 |
+
}
|
| 215 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
| 216 |
+
final_usage = None
|
| 217 |
+
if usage_info:
|
| 218 |
+
prompt_tokens = usage_info.get("promptTokens", 0)
|
| 219 |
+
completion_tokens = usage_info.get("completionTokens", 0)
|
| 220 |
+
final_usage = {
|
| 221 |
+
"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
|
| 222 |
+
"total_tokens": prompt_tokens + completion_tokens,
|
| 223 |
+
}
|
| 224 |
+
done_chunk = {
|
| 225 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
| 226 |
+
"choices": [{
|
| 227 |
+
"index": 0,
|
| 228 |
+
"delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
|
| 229 |
+
"finish_reason": "stop"
|
| 230 |
+
}],
|
| 231 |
+
"usage": final_usage
|
| 232 |
+
}
|
| 233 |
+
yield f"data: {json.dumps(done_chunk)}\n\n"
|
| 234 |
except httpx.HTTPStatusError as e:
|
| 235 |
error_content = {
|
| 236 |
"error": {
|
|
|
|
| 244 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
| 245 |
else: # Non-streaming
|
| 246 |
assistant_response, usage_info = "", {}
|
| 247 |
+
tool_call_json = None
|
| 248 |
try:
|
| 249 |
async with httpx.AsyncClient(timeout=120) as client:
|
| 250 |
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
|
|
|
| 256 |
elif chunk.startswith(("e:", "d:")):
|
| 257 |
try: usage_info = json.loads(chunk[2:]).get("usage", {})
|
| 258 |
except: continue
|
| 259 |
+
|
| 260 |
+
if "<tool_call>" in assistant_response and "</tool_call>" in assistant_response:
|
| 261 |
+
tool_call_str = assistant_response.split("<tool_call>")[1].split("</tool_call>")[0]
|
| 262 |
+
tool_call_json = json.loads(tool_call_str.strip())
|
| 263 |
+
|
| 264 |
+
|
| 265 |
return JSONResponse(content={
|
| 266 |
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
| 267 |
+
"choices": [{"index": 0, "message": {"role": "assistant", "content": assistant_response if tool_call_json is None else None, "tool_calls": tool_call_json}, "finish_reason": "stop"}],
|
| 268 |
"usage": {
|
| 269 |
"prompt_tokens": usage_info.get("promptTokens", 0),
|
| 270 |
"completion_tokens": usage_info.get("completionTokens", 0),
|
|
|
|
| 276 |
|
| 277 |
|
| 278 |
# === Image Generation ===
|
|
|
|
| 279 |
class ImageGenerationRequest(BaseModel):
|
| 280 |
prompt: str
|
| 281 |
aspect_ratio: Optional[str] = "1:1"
|
|
|
|
| 321 |
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
| 322 |
return {"created": int(time.time()), "data": results}
|
| 323 |
|
|
|
|
| 324 |
# === Moderation Endpoint ===
|
|
|
|
| 325 |
class ModerationRequest(BaseModel):
|
| 326 |
input: Union[str, List[str]]
|
| 327 |
model: Optional[str] = "text-moderation-stable"
|
|
|
|
| 335 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
| 336 |
if not input_texts:
|
| 337 |
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string.", "type": "invalid_request_error"}})
|
|
|
|
| 338 |
moderation_url = "https://www.chatwithmono.xyz/api/moderation"
|
| 339 |
headers = {
|
| 340 |
'Content-Type': 'application/json',
|
| 341 |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
| 342 |
'Referer': 'https://www.chatwithmono.xyz/',
|
| 343 |
}
|
|
|
|
| 344 |
results = []
|
| 345 |
try:
|
| 346 |
async with httpx.AsyncClient(timeout=30) as client:
|
|
|
|
| 349 |
resp = await client.post(moderation_url, headers=headers, json=payload)
|
| 350 |
resp.raise_for_status()
|
| 351 |
upstream_data = resp.json()
|
|
|
|
| 352 |
# --- Transform upstream response to OpenAI format ---
|
| 353 |
upstream_categories = upstream_data.get("categories", {})
|
| 354 |
openai_categories = {
|
|
|
|
| 360 |
}
|
| 361 |
category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
|
| 362 |
flagged = upstream_data.get("overall_sentiment") == "flagged"
|
|
|
|
| 363 |
result_item = {
|
| 364 |
"flagged": flagged,
|
| 365 |
"categories": openai_categories,
|
| 366 |
"category_scores": category_scores,
|
| 367 |
}
|
| 368 |
+
|
| 369 |
# --- NEW: Conditionally add the 'reason' field ---
|
| 370 |
# This is a custom extension to the OpenAI spec to provide more detail.
|
| 371 |
reason = upstream_data.get("reason")
|
| 372 |
if reason:
|
| 373 |
result_item["reason"] = reason
|
|
|
|
|
|
|
| 374 |
|
| 375 |
+
results.append(result_item)
|
| 376 |
except httpx.HTTPStatusError as e:
|
| 377 |
return JSONResponse(
|
| 378 |
status_code=502, # Bad Gateway
|
|
|
|
| 380 |
)
|
| 381 |
except Exception as e:
|
| 382 |
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "type": "internal_error", "details": str(e)}})
|
|
|
|
| 383 |
# Build the final OpenAI-compatible response
|
| 384 |
final_response = {
|
| 385 |
"id": generate_random_id("modr-"),
|
|
|
|
| 388 |
}
|
| 389 |
return JSONResponse(content=final_response)
|
| 390 |
|
|
|
|
| 391 |
# --- Main Execution ---
|
|
|
|
| 392 |
if __name__ == "__main__":
|
| 393 |
import uvicorn
|
| 394 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|