Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app.py +145 -106
- requirements.txt +4 -6
- setup.py +9 -0
app.py
CHANGED
|
@@ -1,154 +1,193 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
import random
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
import torch
|
| 8 |
-
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
|
|
|
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
-
MAX_IMAGE_SIZE = 1024
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
@spaces.GPU #[uncomment to use ZeroGPU]
|
| 25 |
-
def infer(
|
| 26 |
-
prompt,
|
| 27 |
-
negative_prompt,
|
| 28 |
-
seed,
|
| 29 |
-
randomize_seed,
|
| 30 |
-
width,
|
| 31 |
-
height,
|
| 32 |
-
guidance_scale,
|
| 33 |
-
num_inference_steps,
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
-
):
|
| 36 |
-
if randomize_seed:
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
-
|
| 39 |
-
generator = torch.Generator().manual_seed(seed)
|
| 40 |
-
|
| 41 |
-
image = pipe(
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
negative_prompt=negative_prompt,
|
| 44 |
-
guidance_scale=guidance_scale,
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
-
|
| 51 |
-
return image, seed
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
examples = [
|
| 55 |
-
"
|
| 56 |
-
"An
|
| 57 |
-
"
|
| 58 |
]
|
| 59 |
|
| 60 |
-
css
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
-
max-width:
|
| 64 |
}
|
| 65 |
"""
|
| 66 |
|
| 67 |
-
with gr.Blocks() as demo:
|
|
|
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown("
|
| 70 |
-
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
|
|
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
show_label=False,
|
| 75 |
max_lines=1,
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
container=False,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0
|
| 81 |
-
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
| 83 |
-
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
| 85 |
-
negative_prompt = gr.Text(
|
| 86 |
-
label="Negative prompt",
|
| 87 |
-
max_lines=1,
|
| 88 |
-
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
seed = gr.Slider(
|
| 93 |
-
label="Seed",
|
| 94 |
-
minimum=0,
|
| 95 |
-
maximum=MAX_SEED,
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
-
|
| 102 |
with gr.Row():
|
| 103 |
-
|
| 104 |
-
|
|
|
|
| 105 |
minimum=256,
|
| 106 |
-
maximum=
|
| 107 |
step=32,
|
| 108 |
-
value=1024,
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
label="
|
| 113 |
minimum=256,
|
| 114 |
-
maximum=
|
| 115 |
step=32,
|
| 116 |
-
value=1024,
|
| 117 |
)
|
| 118 |
-
|
| 119 |
with gr.Row():
|
|
|
|
| 120 |
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance
|
| 122 |
-
minimum=
|
| 123 |
-
maximum=
|
| 124 |
step=0.1,
|
| 125 |
-
value=
|
| 126 |
)
|
| 127 |
-
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
label="Number of inference steps",
|
| 130 |
minimum=1,
|
| 131 |
-
maximum=
|
| 132 |
step=1,
|
| 133 |
-
value=
|
| 134 |
)
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=
|
| 140 |
-
inputs=[
|
| 141 |
-
|
| 142 |
-
negative_prompt,
|
| 143 |
-
seed,
|
| 144 |
-
randomize_seed,
|
| 145 |
-
width,
|
| 146 |
-
height,
|
| 147 |
-
guidance_scale,
|
| 148 |
-
num_inference_steps,
|
| 149 |
-
],
|
| 150 |
-
outputs=[result, seed],
|
| 151 |
)
|
| 152 |
|
| 153 |
-
if __name__ ==
|
| 154 |
-
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
import random
|
| 6 |
+
import numpy as np
|
| 7 |
+
from safetensors.torch import load_file
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
|
| 10 |
+
from diffusers.utils import logging
|
| 11 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
from ovis_image.model.tokenizer import build_ovis_tokenizer
|
| 14 |
+
from ovis_image.model.autoencoder import load_ae
|
| 15 |
+
from ovis_image.model.hf_embedder import OvisEmbedder
|
| 16 |
+
from ovis_image.model.model import OvisImageModel
|
| 17 |
+
from ovis_image.sampling import generate_image
|
| 18 |
+
from ovis_image import ovis_image_configs
|
| 19 |
|
| 20 |
+
logging.set_verbosity_error()
|
|
|
|
| 21 |
|
| 22 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
device = "cuda"
|
| 26 |
+
_dtype = torch.bfloat16
|
| 27 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 28 |
+
|
| 29 |
+
# init ovis_image
|
| 30 |
+
model_config = ovis_image_configs["ovis-image-7b"]
|
| 31 |
+
ovis_image = OvisImageModel(model_config)
|
| 32 |
+
ovis_image_path = hf_hub_download(
|
| 33 |
+
repo_id="AIDC-AI/Ovis-Image-7B",
|
| 34 |
+
filename="ovis_image.safetensors",
|
| 35 |
+
token=hf_token,
|
| 36 |
+
)
|
| 37 |
+
model_state_dict = load_file(ovis_image_path)
|
| 38 |
+
missing_keys, unexpected_keys = ovis_image.load_state_dict(model_state_dict)
|
| 39 |
+
print(f"Load Missing Keys {missing_keys}")
|
| 40 |
+
print(f"Load Unexpected Keys {unexpected_keys}")
|
| 41 |
+
ovis_image = ovis_image.to(device=device, dtype=_dtype)
|
| 42 |
+
ovis_image.eval()
|
| 43 |
+
|
| 44 |
+
# init vae
|
| 45 |
+
vae_path = hf_hub_download(
|
| 46 |
+
repo_id="AIDC-AI/Ovis-Image-7B",
|
| 47 |
+
filename="ae.safetensors",
|
| 48 |
+
token=hf_token,
|
| 49 |
+
)
|
| 50 |
+
autoencoder = load_ae(
|
| 51 |
+
vae_path,
|
| 52 |
+
model_config.autoencoder_params,
|
| 53 |
+
device=device,
|
| 54 |
+
dtype=_dtype,
|
| 55 |
+
random_init=False,
|
| 56 |
+
)
|
| 57 |
+
autoencoder.eval()
|
| 58 |
+
|
| 59 |
+
# init ovis
|
| 60 |
+
ovis_path = hf_hub_download(
|
| 61 |
+
repo_id="AIDC-AI/Ovis-Image-7B",
|
| 62 |
+
filename="Ovis2.5-2B",
|
| 63 |
+
token=hf_token,
|
| 64 |
+
)
|
| 65 |
+
ovis_tokenizer = build_ovis_tokenizer(ovis_path)
|
| 66 |
+
ovis_encoder = OvisEmbedder(
|
| 67 |
+
model_path=ovis_path,
|
| 68 |
+
random_init=False,
|
| 69 |
+
low_cpu_mem_usage=True,
|
| 70 |
+
torch_dtype=torch.bfloat16,
|
| 71 |
+
).to(device=device, dtype=_dtype)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@spaces.GPU(duration=75)
|
| 75 |
+
def generate(prompt, img_height=1024, img_width=1024, seed=42, steps=50, guidance_scale=5.0):
|
| 76 |
+
print(f'inference with prompt : {prompt}, size: {img_height}x{img_width}, seed : {seed}, step : {steps}, cfg : {guidance_scale}')
|
| 77 |
+
image = generate_image(
|
| 78 |
+
device=device,
|
| 79 |
+
dtype=_dtype,
|
| 80 |
+
model=ovis_image,
|
| 81 |
+
prompt=prompt,
|
| 82 |
+
autoencoder=autoencoder,
|
| 83 |
+
ovis_tokenizer=ovis_tokenizer,
|
| 84 |
+
ovis_encoder=ovis_encoder,
|
| 85 |
+
img_height=img_height,
|
| 86 |
+
img_width=img_width,
|
| 87 |
+
denoising_steps=steps,
|
| 88 |
+
cfg_scale=guidance_scale,
|
| 89 |
+
seed=seed,
|
| 90 |
+
)
|
| 91 |
+
# bring into PIL format and save
|
| 92 |
+
image = image.clamp(-1, 1)
|
| 93 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 94 |
+
image = (image * 255).round().astype("uint8")
|
| 95 |
+
|
| 96 |
+
return image[0]
|
| 97 |
|
| 98 |
examples = [
|
| 99 |
+
"Solar punk vehicle in a bustling city",
|
| 100 |
+
"An anthropomorphic cat riding a Harley Davidson in Arizona with sunglasses and a leather jacket",
|
| 101 |
+
"An elderly woman poses for a high fashion photoshoot in colorful, patterned clothes with a cyberpunk 2077 vibe",
|
| 102 |
]
|
| 103 |
|
| 104 |
+
css="""
|
| 105 |
#col-container {
|
| 106 |
margin: 0 auto;
|
| 107 |
+
max-width: 520px;
|
| 108 |
}
|
| 109 |
"""
|
| 110 |
|
| 111 |
+
with gr.Blocks(css=css) as demo:
|
| 112 |
+
|
| 113 |
with gr.Column(elem_id="col-container"):
|
| 114 |
+
gr.Markdown(f"""# Ovis-Image
|
| 115 |
+
[[code](https://github.com/AIDC-AI/Ovis-Image)] [[model](https://huggingface.co/AIDC-AI/Ovis-Image-7B)]
|
| 116 |
+
""")
|
| 117 |
+
|
| 118 |
with gr.Row():
|
| 119 |
+
|
| 120 |
prompt = gr.Text(
|
| 121 |
label="Prompt",
|
| 122 |
show_label=False,
|
| 123 |
max_lines=1,
|
| 124 |
+
placeholder="Enter your prompt here",
|
| 125 |
container=False,
|
| 126 |
)
|
| 127 |
+
|
| 128 |
+
run_button = gr.Button("Run", scale=0)
|
| 129 |
+
|
| 130 |
result = gr.Image(label="Result", show_label=False)
|
| 131 |
+
|
| 132 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
with gr.Row():
|
| 134 |
+
|
| 135 |
+
img_height = gr.Slider(
|
| 136 |
+
label="Image Height",
|
| 137 |
minimum=256,
|
| 138 |
+
maximum=2048,
|
| 139 |
step=32,
|
| 140 |
+
value=1024,
|
| 141 |
)
|
| 142 |
+
|
| 143 |
+
img_width = gr.Slider(
|
| 144 |
+
label="Image Width",
|
| 145 |
minimum=256,
|
| 146 |
+
maximum=2048,
|
| 147 |
step=32,
|
| 148 |
+
value=1024,
|
| 149 |
)
|
| 150 |
+
|
| 151 |
with gr.Row():
|
| 152 |
+
|
| 153 |
guidance_scale = gr.Slider(
|
| 154 |
+
label="Guidance Scale",
|
| 155 |
+
minimum=1,
|
| 156 |
+
maximum=14,
|
| 157 |
step=0.1,
|
| 158 |
+
value=5.0,
|
| 159 |
)
|
| 160 |
+
|
| 161 |
num_inference_steps = gr.Slider(
|
| 162 |
label="Number of inference steps",
|
| 163 |
minimum=1,
|
| 164 |
+
maximum=100,
|
| 165 |
step=1,
|
| 166 |
+
value=50,
|
| 167 |
)
|
| 168 |
|
| 169 |
+
seed = gr.Slider(
|
| 170 |
+
label="Seed",
|
| 171 |
+
minimum=0,
|
| 172 |
+
maximum=MAX_SEED,
|
| 173 |
+
step=1,
|
| 174 |
+
value=42,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
gr.Examples(
|
| 178 |
+
examples = examples,
|
| 179 |
+
fn = generate,
|
| 180 |
+
inputs = [prompt],
|
| 181 |
+
outputs = [result],
|
| 182 |
+
cache_examples="lazy"
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
gr.on(
|
| 186 |
triggers=[run_button.click, prompt.submit],
|
| 187 |
+
fn = generate,
|
| 188 |
+
inputs = [prompt, img_height, img_width, seed, num_inference_steps, guidance_scale],
|
| 189 |
+
outputs = [result]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
)
|
| 191 |
|
| 192 |
+
if __name__ == '__main__':
|
| 193 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,6 +1,4 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
transformers
|
| 6 |
-
xformers
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
transformers >= 4.53.0
|
| 3 |
+
einops
|
| 4 |
+
safetensors
|
|
|
|
|
|
setup.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from setuptools import setup, find_packages
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
setup(
|
| 5 |
+
name='ovis_image',
|
| 6 |
+
version='1.0.0',
|
| 7 |
+
packages=find_packages(include=['ovis_image']),
|
| 8 |
+
# include any other necessary details here
|
| 9 |
+
)
|