Spaces:
Running
Running
tianfengping.tfp
commited on
Commit
·
1bd43c9
1
Parent(s):
7ae3e9e
check prompt
Browse files
app.py
CHANGED
|
@@ -34,38 +34,54 @@ import numpy
|
|
| 34 |
sys.path.append('third_party/Matcha-TTS')
|
| 35 |
os.system('export PYTHONPATH=third_party/Matcha-TTS')
|
| 36 |
|
| 37 |
-
assets_dir = snapshot_download(
|
| 38 |
-
repo_id="tienfeng/prompt",
|
| 39 |
-
repo_type="dataset",
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
from huggingface_hub import hf_hub_download
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
| 69 |
|
| 70 |
text_prompt = {
|
| 71 |
"翟佳宁": "这个节目就是把四个男嘉宾,四个女嘉宾放一个大别墅里让他们朝夕相处一整个月,月末选择心动的彼此。",
|
|
@@ -140,12 +156,17 @@ os.makedirs("./tmp", exist_ok=True)
|
|
| 140 |
|
| 141 |
def generate_speech_speakerminus(tts_text, speed, speaker, key, ref_audio, ref_text):
|
| 142 |
# import pdb;pdb.set_trace()
|
| 143 |
-
global tts_speakerminus_global
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
| 145 |
print("Loading CosyVoice (speakerminus) model...")
|
| 146 |
tts_speakerminus_global = CosyVoiceTTS_speakerminus(model_dir=local_model_path)
|
| 147 |
|
| 148 |
if not ref_audio and not ref_text:
|
|
|
|
|
|
|
| 149 |
ref_text = text_prompt.get(speaker, "")
|
| 150 |
speaker_audio_name = audio_prompt.get(speaker)
|
| 151 |
if speaker_audio_name:
|
|
@@ -179,16 +200,20 @@ def generate_speech_speakerminus(tts_text, speed, speaker, key, ref_audio, ref_t
|
|
| 179 |
ref_audio = load_wav(ref_audio, 16000)
|
| 180 |
emo = {"Sad": "伤心", "Fearful": "恐惧", "Happy": "快乐", "Surprise": "惊喜", "Angry": "生气", "Jolliest": "戏谑"}
|
| 181 |
# key="快乐"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if key in ["Angry", "Surprise", "Happy"]:
|
| 183 |
-
emotion_info =
|
| 184 |
elif key in ["Sad"]:
|
| 185 |
-
emotion_info =
|
| 186 |
elif key in ["Fearful"]:
|
| 187 |
-
emotion_info =
|
| 188 |
else:
|
| 189 |
-
emotion_info =
|
| 190 |
|
| 191 |
-
sample_rate, full_audio =
|
| 192 |
tts_text,
|
| 193 |
prompt_text = ref_text,
|
| 194 |
# speaker=speaker,
|
|
@@ -215,11 +240,16 @@ def generate_speech_speakerminus(tts_text, speed, speaker, key, ref_audio, ref_t
|
|
| 215 |
|
| 216 |
def generate_speech_sft(tts_text, speed, speaker, key, ref_audio, ref_text):
|
| 217 |
# import pdb;pdb.set_trace()
|
| 218 |
-
global tts_sft_global
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
| 220 |
print("Loading CosyVoice (SFT enhanced) model...")
|
| 221 |
tts_sft_global = CosyVoiceTTS_speakerminus(model_dir=local_model_path_enhenced)
|
| 222 |
if not ref_audio and not ref_text:
|
|
|
|
|
|
|
| 223 |
ref_text = text_prompt.get(speaker, "")
|
| 224 |
speaker_audio_name = audio_prompt.get(speaker)
|
| 225 |
if speaker_audio_name:
|
|
@@ -252,14 +282,18 @@ def generate_speech_sft(tts_text, speed, speaker, key, ref_audio, ref_text):
|
|
| 252 |
|
| 253 |
emo = {"Sad": "伤心", "Fearful": "恐惧", "Happy": "快乐", "Surprise": "惊喜", "Angry": "生气", "Jolliest": "戏谑"}
|
| 254 |
# key="快乐"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
if key in ["Angry", "Surprise", "Happy"]:
|
| 256 |
-
emotion_info =
|
| 257 |
elif key in ["Sad"]:
|
| 258 |
-
emotion_info =
|
| 259 |
elif key in ["Fearful"]:
|
| 260 |
-
emotion_info =
|
| 261 |
else:
|
| 262 |
-
emotion_info =
|
| 263 |
|
| 264 |
sample_rate, full_audio = tts_sft_global.inference_zero_shot(
|
| 265 |
tts_text,
|
|
@@ -793,17 +827,26 @@ def preload_models():
|
|
| 793 |
"""Pre-download models to cache (non-blocking for launch)"""
|
| 794 |
import threading
|
| 795 |
def _download():
|
| 796 |
-
|
| 797 |
-
|
| 798 |
-
|
|
|
|
|
|
|
|
|
|
| 799 |
threading.Thread(target=_download, daemon=True).start()
|
| 800 |
|
|
|
|
| 801 |
preload_models()
|
| 802 |
|
| 803 |
if __name__ == "__main__":
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
|
| 808 |
-
|
| 809 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
sys.path.append('third_party/Matcha-TTS')
|
| 35 |
os.system('export PYTHONPATH=third_party/Matcha-TTS')
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
from huggingface_hub import hf_hub_download
|
| 38 |
|
| 39 |
+
# Download assets and logos first (these are small files)
|
| 40 |
+
try:
|
| 41 |
+
assets_dir = snapshot_download(
|
| 42 |
+
repo_id="tienfeng/prompt",
|
| 43 |
+
repo_type="dataset",
|
| 44 |
+
)
|
| 45 |
+
logo_path = hf_hub_download(
|
| 46 |
+
repo_id="tienfeng/prompt",
|
| 47 |
+
filename="logo2.png",
|
| 48 |
+
repo_type="dataset",
|
| 49 |
+
)
|
| 50 |
+
logo_path2 = hf_hub_download(
|
| 51 |
+
repo_id="tienfeng/prompt",
|
| 52 |
+
filename="logo.png",
|
| 53 |
+
repo_type="dataset",
|
| 54 |
+
)
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"Warning: Failed to download assets/logos: {e}")
|
| 57 |
+
assets_dir = None
|
| 58 |
+
logo_path = None
|
| 59 |
+
logo_path2 = None
|
| 60 |
|
| 61 |
+
# Delay model download to avoid blocking startup
|
| 62 |
+
model_repo_id = "AIDC-AI/Marco-Voice"
|
| 63 |
+
local_model = None
|
| 64 |
+
local_model_path = None
|
| 65 |
+
local_model_path_enhenced = None
|
| 66 |
+
|
| 67 |
+
def load_models():
|
| 68 |
+
"""Load models lazily when needed"""
|
| 69 |
+
global local_model, local_model_path, local_model_path_enhenced
|
| 70 |
+
if local_model is None:
|
| 71 |
+
print("Downloading models...")
|
| 72 |
+
local_model = snapshot_download(
|
| 73 |
+
repo_id=model_repo_id,
|
| 74 |
+
repo_type="model"
|
| 75 |
+
# token=os.getenv("HF_TOKEN")
|
| 76 |
+
)
|
| 77 |
+
local_model_path = os.path.join(local_model, "marco_voice")
|
| 78 |
+
local_model_path_enhenced = os.path.join(local_model, "marco_voice_enhenced")
|
| 79 |
+
print("Models downloaded successfully")
|
| 80 |
|
| 81 |
+
# Delay model loading to avoid blocking startup
|
| 82 |
+
# Models will be loaded lazily when first used
|
| 83 |
+
tts_speakerminus = None
|
| 84 |
+
tts_sft = None
|
| 85 |
|
| 86 |
text_prompt = {
|
| 87 |
"翟佳宁": "这个节目就是把四个男嘉宾,四个女嘉宾放一个大别墅里让他们朝夕相处一整个月,月末选择心动的彼此。",
|
|
|
|
| 156 |
|
| 157 |
def generate_speech_speakerminus(tts_text, speed, speaker, key, ref_audio, ref_text):
|
| 158 |
# import pdb;pdb.set_trace()
|
| 159 |
+
global tts_speakerminus_global, local_model_path
|
| 160 |
+
# Ensure models are downloaded
|
| 161 |
+
if local_model_path is None:
|
| 162 |
+
load_models()
|
| 163 |
+
if 'tts_speakerminus_global' not in globals() or tts_speakerminus_global is None:
|
| 164 |
print("Loading CosyVoice (speakerminus) model...")
|
| 165 |
tts_speakerminus_global = CosyVoiceTTS_speakerminus(model_dir=local_model_path)
|
| 166 |
|
| 167 |
if not ref_audio and not ref_text:
|
| 168 |
+
if audio_prompt_path is None:
|
| 169 |
+
raise ValueError("Audio prompt path is not available. Please provide reference audio and text.")
|
| 170 |
ref_text = text_prompt.get(speaker, "")
|
| 171 |
speaker_audio_name = audio_prompt.get(speaker)
|
| 172 |
if speaker_audio_name:
|
|
|
|
| 200 |
ref_audio = load_wav(ref_audio, 16000)
|
| 201 |
emo = {"Sad": "伤心", "Fearful": "恐惧", "Happy": "快乐", "Surprise": "惊喜", "Angry": "生气", "Jolliest": "戏谑"}
|
| 202 |
# key="快乐"
|
| 203 |
+
emotion_file = "./emotion_info.pt"
|
| 204 |
+
if not os.path.exists(emotion_file):
|
| 205 |
+
raise FileNotFoundError(f"Emotion info file not found: {emotion_file}. Please ensure this file exists in the workspace.")
|
| 206 |
+
emotion_data = torch.load(emotion_file)
|
| 207 |
if key in ["Angry", "Surprise", "Happy"]:
|
| 208 |
+
emotion_info = emotion_data["male005"][key]
|
| 209 |
elif key in ["Sad"]:
|
| 210 |
+
emotion_info = emotion_data["female005"][key]
|
| 211 |
elif key in ["Fearful"]:
|
| 212 |
+
emotion_info = emotion_data["female003"][key]
|
| 213 |
else:
|
| 214 |
+
emotion_info = emotion_data["male005"][key]
|
| 215 |
|
| 216 |
+
sample_rate, full_audio = tts_speakerminus_global.inference_zero_shot(
|
| 217 |
tts_text,
|
| 218 |
prompt_text = ref_text,
|
| 219 |
# speaker=speaker,
|
|
|
|
| 240 |
|
| 241 |
def generate_speech_sft(tts_text, speed, speaker, key, ref_audio, ref_text):
|
| 242 |
# import pdb;pdb.set_trace()
|
| 243 |
+
global tts_sft_global, local_model_path_enhenced
|
| 244 |
+
# Ensure models are downloaded
|
| 245 |
+
if local_model_path_enhenced is None:
|
| 246 |
+
load_models()
|
| 247 |
+
if 'tts_sft_global' not in globals() or tts_sft_global is None:
|
| 248 |
print("Loading CosyVoice (SFT enhanced) model...")
|
| 249 |
tts_sft_global = CosyVoiceTTS_speakerminus(model_dir=local_model_path_enhenced)
|
| 250 |
if not ref_audio and not ref_text:
|
| 251 |
+
if audio_prompt_path is None:
|
| 252 |
+
raise ValueError("Audio prompt path is not available. Please provide reference audio and text.")
|
| 253 |
ref_text = text_prompt.get(speaker, "")
|
| 254 |
speaker_audio_name = audio_prompt.get(speaker)
|
| 255 |
if speaker_audio_name:
|
|
|
|
| 282 |
|
| 283 |
emo = {"Sad": "伤心", "Fearful": "恐惧", "Happy": "快乐", "Surprise": "惊喜", "Angry": "生气", "Jolliest": "戏谑"}
|
| 284 |
# key="快乐"
|
| 285 |
+
emotion_file = "./emotion_info.pt"
|
| 286 |
+
if not os.path.exists(emotion_file):
|
| 287 |
+
raise FileNotFoundError(f"Emotion info file not found: {emotion_file}. Please ensure this file exists in the workspace.")
|
| 288 |
+
emotion_data = torch.load(emotion_file)
|
| 289 |
if key in ["Angry", "Surprise", "Happy"]:
|
| 290 |
+
emotion_info = emotion_data["male005"][key]
|
| 291 |
elif key in ["Sad"]:
|
| 292 |
+
emotion_info = emotion_data["female005"][key]
|
| 293 |
elif key in ["Fearful"]:
|
| 294 |
+
emotion_info = emotion_data["female003"][key]
|
| 295 |
else:
|
| 296 |
+
emotion_info = emotion_data["male005"][key]
|
| 297 |
|
| 298 |
sample_rate, full_audio = tts_sft_global.inference_zero_shot(
|
| 299 |
tts_text,
|
|
|
|
| 827 |
"""Pre-download models to cache (non-blocking for launch)"""
|
| 828 |
import threading
|
| 829 |
def _download():
|
| 830 |
+
try:
|
| 831 |
+
print("Pre-downloading models to cache...")
|
| 832 |
+
load_models()
|
| 833 |
+
print("Model pre-download completed.")
|
| 834 |
+
except Exception as e:
|
| 835 |
+
print(f"Warning: Model pre-download failed: {e}. Models will be loaded on first use.")
|
| 836 |
threading.Thread(target=_download, daemon=True).start()
|
| 837 |
|
| 838 |
+
# Start preloading models in background (non-blocking)
|
| 839 |
preload_models()
|
| 840 |
|
| 841 |
if __name__ == "__main__":
|
| 842 |
+
# Use environment variable for port (Hugging Face Spaces uses 7860 by default)
|
| 843 |
+
server_port = int(os.environ.get("SERVER_PORT", 7860))
|
| 844 |
+
launch_kwargs = {
|
| 845 |
+
"server_name": "0.0.0.0",
|
| 846 |
+
"server_port": server_port,
|
| 847 |
+
"share": False,
|
| 848 |
+
}
|
| 849 |
+
# Only add favicon if it was successfully downloaded
|
| 850 |
+
if logo_path2 is not None:
|
| 851 |
+
launch_kwargs["favicon_path"] = logo_path2
|
| 852 |
+
demo.launch(**launch_kwargs)
|