Spaces:
Sleeping
Sleeping
| import random | |
| import spaces | |
| import os | |
| import uuid | |
| os.putenv('PYTORCH_NVML_BASED_CUDA_CHECK','1') | |
| os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1') | |
| alloc_conf_parts = [ | |
| 'expandable_segments:True', | |
| 'pinned_use_background_threads:True' # Specific to pinned memory. | |
| ] | |
| os.environ['PYTORCH_CUDA_ALLOC_CONF'] = ','.join(alloc_conf_parts) | |
| os.environ["SAFETENSORS_FAST_GPU"] = "1" | |
| os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1') | |
| import torch | |
| torch.backends.cuda.matmul.allow_tf32 = False | |
| torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False | |
| torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False | |
| torch.backends.cudnn.allow_tf32 = False | |
| torch.backends.cudnn.deterministic = False | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cuda.preferred_blas_library="cublas" | |
| torch.backends.cuda.preferred_linalg_library="cusolver" | |
| torch.set_float32_matmul_precision("highest") | |
| import torchaudio | |
| from einops import rearrange | |
| import gradio as gr | |
| from stable_audio_tools import get_pretrained_model | |
| from stable_audio_tools.inference.generation import generate_diffusion_cond | |
| model, model_config = get_pretrained_model("ford442/stable-audio-open-1.0") | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"Using device: {device}") | |
| model.to(device,torch.float32) | |
| def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7, use_bfloat=False, use_eval=False): | |
| print(f"Prompt received: {prompt}") | |
| print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") | |
| seed = random.randint(0, 2**63 - 1) | |
| random.seed(seed) | |
| torch.manual_seed(seed) | |
| print(f"Using seed: {seed}") | |
| sample_rate = model_config["sample_rate"] | |
| sample_size = model_config["sample_size"] | |
| print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") | |
| print("Model moved to device.") | |
| conditioning = [{ | |
| "prompt": prompt, | |
| "seconds_start": 0, | |
| "seconds_total": seconds_total | |
| }] | |
| print(f"Conditioning: {conditioning}") | |
| print("Generating audio...") | |
| if use_bfloat==True: | |
| model.to(torch.bfloat16) | |
| if use_eval==True: | |
| model.eval() | |
| torch.cuda.empty_cache() | |
| torch.cuda.reset_peak_memory_stats() | |
| output = generate_diffusion_cond( | |
| model, | |
| steps=steps, | |
| cfg_scale=cfg_scale, | |
| conditioning=conditioning, | |
| sample_size=sample_size, | |
| sigma_min=0.3, | |
| sigma_max=500, | |
| sampler_type="dpmpp-3m-sde", | |
| device=device | |
| ) | |
| print("Audio generated.") | |
| output = rearrange(output, "b d n -> d (b n)") | |
| # Peak normalize, clip, convert to int16 | |
| output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
| unique_filename = f"output_{uuid.uuid4().hex}.flac" | |
| print(f"Saving audio to file: {unique_filename}") | |
| torchaudio.save( | |
| unique_filename, | |
| output, | |
| sample_rate, | |
| format="flac", | |
| encoding="PCM_F", | |
| bits_per_sample=24 | |
| ) | |
| print(f"Audio saved: {unique_filename}") | |
| return unique_filename | |
| interface = gr.Interface( | |
| fn=generate_audio, | |
| inputs=[ | |
| gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"), | |
| gr.Slider(0, 420, value=30, label="Duration in Seconds"), | |
| gr.Slider(10, 420, value=100, step=10, label="Number of Diffusion Steps"), | |
| gr.Slider(1.0, 32.0, value=7.0, step=0.1, label="CFG Scale"), | |
| gr.Checkbox(value=False, label="Use Brainfloat"), | |
| gr.Checkbox(value=False, label="Use eval()") | |
| ], | |
| outputs=gr.Audio(type="filepath", label="Generated Audio"), | |
| title="Stable Audio Generator", | |
| description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.", | |
| examples=[ | |
| [ | |
| "Create a serene soundscape of a quiet beach at sunset.", # Text prompt | |
| 45, # Duration in Seconds | |
| 100, # Number of Diffusion Steps | |
| 10.0, # CFG Scale | |
| ], | |
| [ | |
| "Generate an energetic and bustling city street scene with distant traffic and close conversations.", # Text prompt | |
| 30, # Duration in Seconds | |
| 120, # Number of Diffusion Steps | |
| 5.0, # CFG Scale | |
| ], | |
| [ | |
| "Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt | |
| 60, # Duration in Seconds | |
| 140, # Number of Diffusion Steps | |
| 7.5, # CFG Scale | |
| ], | |
| [ | |
| "Recreate a gentle rainfall with distant thunder.", # Text prompt | |
| 35, # Duration in Seconds | |
| 110, # Number of Diffusion Steps | |
| 8.0, # CFG Scale | |
| ], | |
| [ | |
| "Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt | |
| 25, # Duration in Seconds | |
| 90, # Number of Diffusion Steps | |
| 6.0, # CFG Scale | |
| ], | |
| ["Rock beat played in a treated studio, session drumming on an acoustic kit.", | |
| 30, # Duration in Seconds | |
| 100, # Number of Diffusion Steps | |
| 7.0, # CFG Scale | |
| ] | |
| ]) | |
| interface.launch() | |