Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import DiffusionPipeline | |
| import gradio as gr | |
| # Load the Flux model with ControlNet upscaling | |
| pipe = DiffusionPipeline.from_pretrained("jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.float16) | |
| pipe.to("cuda") # Send the model to GPU if available | |
| # Function to generate an image based on user prompt | |
| def generate_image(prompt): | |
| # Generate an image using the Flux model | |
| with torch.inference_mode(): | |
| image = pipe(prompt).images[0] | |
| return image | |
| # Set up the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Image Generation using Flux (jasperai/Flux.1-dev-Controlnet-Upscaler)") | |
| # Input for user to provide a text prompt | |
| prompt_input = gr.Textbox(label="Enter Text Prompt", | |
| placeholder="e.g. 'Astronaut in a jungle, cold color palette, muted colors, detailed, 8k'", | |
| value="Astronaut in a jungle, cold color palette, muted colors, detailed, 8k") | |
| # Output to display the generated image | |
| output_image = gr.Image(label="Generated Image") | |
| # Button to trigger image generation | |
| generate_button = gr.Button("Generate Image") | |
| # Link button click to image generation function | |
| generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image) | |
| # Launch the Gradio app | |
| demo.launch() | |