Create train_script.py
Browse files- train_script.py +124 -0
train_script.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import traceback
|
| 3 |
+
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from sentence_transformers import (
|
| 6 |
+
SentenceTransformer,
|
| 7 |
+
SentenceTransformerModelCardData,
|
| 8 |
+
SentenceTransformerTrainer,
|
| 9 |
+
SentenceTransformerTrainingArguments,
|
| 10 |
+
)
|
| 11 |
+
from sentence_transformers.evaluation import InformationRetrievalEvaluator
|
| 12 |
+
from sentence_transformers.losses import CachedMultipleNegativesRankingLoss
|
| 13 |
+
from sentence_transformers.training_args import BatchSamplers
|
| 14 |
+
|
| 15 |
+
# Set the log level to INFO to get more information
|
| 16 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
| 17 |
+
|
| 18 |
+
# 1. Load a model to finetune with 2. (Optional) model card data
|
| 19 |
+
model = SentenceTransformer(
|
| 20 |
+
"google/embeddinggemma-300M",
|
| 21 |
+
model_card_data=SentenceTransformerModelCardData(
|
| 22 |
+
language="en",
|
| 23 |
+
license="apache-2.0",
|
| 24 |
+
model_name="EmbeddingGemma-300M trained on the Medical Instruction and RetrIeval Dataset (MIRIAD)",
|
| 25 |
+
),
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# 3. Load a dataset to finetune on
|
| 29 |
+
train_dataset = load_dataset("tomaarsen/miriad-4.4M-split", split="train").select(range(100_000))
|
| 30 |
+
eval_dataset = load_dataset("tomaarsen/miriad-4.4M-split", split="eval").select(range(1_000))
|
| 31 |
+
test_dataset = load_dataset("tomaarsen/miriad-4.4M-split", split="test").select(range(1_000))
|
| 32 |
+
|
| 33 |
+
# 4. Define a loss function. CachedMultipleNegativesRankingLoss (CMNRL) is a special variant of MNRL (a.k.a. InfoNCE),
|
| 34 |
+
# which take question-answer pairs (or triplets, etc.) as input. It will take answers from other questions in the batch
|
| 35 |
+
# as wrong answers, reducing the distance between the question and the true answer while increasing the distance to the
|
| 36 |
+
# wrong answers, in the embedding space.
|
| 37 |
+
# The (C)MNRL losses benefit from larger `per_device_train_batch_size` in the Training Arguments, as they can leverage
|
| 38 |
+
# more in-batch negative samples. At the same time, the `mini_batch_size` does not affect training performance, but it
|
| 39 |
+
# does limit the memory usage. A good trick is setting a high `per_device_train_batch_size` while keeping
|
| 40 |
+
# `mini_batch_size` small.
|
| 41 |
+
loss = CachedMultipleNegativesRankingLoss(model, mini_batch_size=8)
|
| 42 |
+
|
| 43 |
+
# 5. (Optional) Specify training arguments
|
| 44 |
+
run_name = "embeddinggemma-300M-medical-100k"
|
| 45 |
+
args = SentenceTransformerTrainingArguments(
|
| 46 |
+
# Required parameter:
|
| 47 |
+
output_dir=f"models/{run_name}",
|
| 48 |
+
# Optional training parameters:
|
| 49 |
+
num_train_epochs=1,
|
| 50 |
+
per_device_train_batch_size=128,
|
| 51 |
+
per_device_eval_batch_size=128,
|
| 52 |
+
learning_rate=2e-5,
|
| 53 |
+
warmup_ratio=0.1,
|
| 54 |
+
fp16=True, # Set to False if you get an error that your GPU can't run on FP16
|
| 55 |
+
bf16=False, # Set to True if you have a GPU that supports BF16
|
| 56 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # (Cached)MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
| 57 |
+
prompts={ # Map training column names to model prompts
|
| 58 |
+
"question": model.prompts["query"],
|
| 59 |
+
"passage_text": model.prompts["document"],
|
| 60 |
+
},
|
| 61 |
+
# Optional tracking/debugging parameters:
|
| 62 |
+
eval_strategy="steps",
|
| 63 |
+
eval_steps=100,
|
| 64 |
+
save_strategy="steps",
|
| 65 |
+
save_steps=100,
|
| 66 |
+
save_total_limit=2,
|
| 67 |
+
logging_steps=20,
|
| 68 |
+
run_name=run_name, # Will be used in W&B if `wandb` is installed
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# 6. (Optional) Create an evaluator using the evaluation queries and 31k answers & evaluate the base model
|
| 72 |
+
queries = dict(enumerate(eval_dataset["question"]))
|
| 73 |
+
corpus = dict(enumerate(eval_dataset["passage_text"] + train_dataset["passage_text"][:30_000]))
|
| 74 |
+
relevant_docs = {idx: [idx] for idx in queries}
|
| 75 |
+
dev_evaluator = InformationRetrievalEvaluator(
|
| 76 |
+
queries=queries,
|
| 77 |
+
corpus=corpus,
|
| 78 |
+
relevant_docs=relevant_docs,
|
| 79 |
+
name="miriad-eval-1kq-31kd", # 1k questions, 31k passages
|
| 80 |
+
show_progress_bar=True,
|
| 81 |
+
)
|
| 82 |
+
dev_evaluator(model)
|
| 83 |
+
|
| 84 |
+
# 7. Create a trainer & train
|
| 85 |
+
trainer = SentenceTransformerTrainer(
|
| 86 |
+
model=model,
|
| 87 |
+
args=args,
|
| 88 |
+
train_dataset=train_dataset,
|
| 89 |
+
eval_dataset=eval_dataset,
|
| 90 |
+
loss=loss,
|
| 91 |
+
evaluator=dev_evaluator,
|
| 92 |
+
)
|
| 93 |
+
trainer.train()
|
| 94 |
+
|
| 95 |
+
# (Optional) Evaluate the trained model on the evaluation set once more, this will also log the results
|
| 96 |
+
# and include them in the model card
|
| 97 |
+
dev_evaluator(model)
|
| 98 |
+
|
| 99 |
+
queries = dict(enumerate(test_dataset["question"]))
|
| 100 |
+
corpus = dict(enumerate(test_dataset["passage_text"] + train_dataset["passage_text"][:30_000]))
|
| 101 |
+
relevant_docs = {idx: [idx] for idx in queries}
|
| 102 |
+
test_evaluator = InformationRetrievalEvaluator(
|
| 103 |
+
queries=queries,
|
| 104 |
+
corpus=corpus,
|
| 105 |
+
relevant_docs=relevant_docs,
|
| 106 |
+
name="miriad-test-1kq-31kd", # 1k questions, 31k passages
|
| 107 |
+
show_progress_bar=True,
|
| 108 |
+
)
|
| 109 |
+
test_evaluator(model)
|
| 110 |
+
|
| 111 |
+
# 8. Save the trained model
|
| 112 |
+
final_output_dir = f"models/{run_name}/final"
|
| 113 |
+
model.save_pretrained(final_output_dir)
|
| 114 |
+
|
| 115 |
+
# 9. (Optional) Push it to the Hugging Face Hub
|
| 116 |
+
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
|
| 117 |
+
try:
|
| 118 |
+
model.push_to_hub(run_name)
|
| 119 |
+
except Exception:
|
| 120 |
+
logging.error(
|
| 121 |
+
f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
|
| 122 |
+
f"`huggingface-cli login`, followed by loading the model using `model = SentenceTransformer({final_output_dir!r})` "
|
| 123 |
+
f"and saving it using `model.push_to_hub('{run_name}')`."
|
| 124 |
+
)
|