new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Towards Pixel-Level Prediction for Gaze Following: Benchmark and Approach

Following the gaze of other people and analyzing the target they are looking at can help us understand what they are thinking, and doing, and predict the actions that may follow. Existing methods for gaze following struggle to perform well in natural scenes with diverse objects, and focus on gaze points rather than objects, making it difficult to deliver clear semantics and accurate scope of the targets. To address this shortcoming, we propose a novel gaze target prediction solution named GazeSeg, that can fully utilize the spatial visual field of the person as guiding information and lead to a progressively coarse-to-fine gaze target segmentation and recognition process. Specifically, a prompt-based visual foundation model serves as the encoder, working in conjunction with three distinct decoding modules (e.g. FoV perception, heatmap generation, and segmentation) to form the framework for gaze target prediction. Then, with the head bounding box performed as an initial prompt, GazeSeg obtains the FoV map, heatmap, and segmentation map progressively, leading to a unified framework for multiple tasks (e.g. direction estimation, gaze target segmentation, and recognition). In particular, to facilitate this research, we construct and release a new dataset, comprising 72k images with pixel-level annotations and 270 categories of gaze targets, built upon the GazeFollow dataset. The quantitative evaluation shows that our approach achieves the Dice of 0.325 in gaze target segmentation and 71.7% top-5 recognition. Meanwhile, our approach also outperforms previous state-of-the-art methods, achieving 0.953 in AUC on the gaze-following task. The dataset and code will be released.

  • 7 authors
·
Nov 29, 2024

ChildPlay: A New Benchmark for Understanding Children's Gaze Behaviour

Gaze behaviors such as eye-contact or shared attention are important markers for diagnosing developmental disorders in children. While previous studies have looked at some of these elements, the analysis is usually performed on private datasets and is restricted to lab settings. Furthermore, all publicly available gaze target prediction benchmarks mostly contain instances of adults, which makes models trained on them less applicable to scenarios with young children. In this paper, we propose the first study for predicting the gaze target of children and interacting adults. To this end, we introduce the ChildPlay dataset: a curated collection of short video clips featuring children playing and interacting with adults in uncontrolled environments (e.g. kindergarten, therapy centers, preschools etc.), which we annotate with rich gaze information. We further propose a new model for gaze target prediction that is geometrically grounded by explicitly identifying the scene parts in the 3D field of view (3DFoV) of the person, leveraging recent geometry preserving depth inference methods. Our model achieves state of the art results on benchmark datasets and ChildPlay. Furthermore, results show that looking at faces prediction performance on children is much worse than on adults, and can be significantly improved by fine-tuning models using child gaze annotations. Our dataset and models will be made publicly available.

  • 3 authors
·
Jul 4, 2023

GazeGen: Gaze-Driven User Interaction for Visual Content Generation

We present GazeGen, a user interaction system that generates visual content (images and videos) for locations indicated by the user's eye gaze. GazeGen allows intuitive manipulation of visual content by targeting regions of interest with gaze. Using advanced techniques in object detection and generative AI, GazeGen performs gaze-controlled image adding/deleting, repositioning, and surface material changes of image objects, and converts static images into videos. Central to GazeGen is the DFT Gaze (Distilled and Fine-Tuned Gaze) agent, an ultra-lightweight model with only 281K parameters, performing accurate real-time gaze predictions tailored to individual users' eyes on small edge devices. GazeGen is the first system to combine visual content generation with real-time gaze estimation, made possible exclusively by DFT Gaze. This real-time gaze estimation enables various visual content generation tasks, all controlled by the user's gaze. The input for DFT Gaze is the user's eye images, while the inputs for visual content generation are the user's view and the predicted gaze point from DFT Gaze. To achieve efficient gaze predictions, we derive the small model from a large model (10x larger) via novel knowledge distillation and personal adaptation techniques. We integrate knowledge distillation with a masked autoencoder, developing a compact yet powerful gaze estimation model. This model is further fine-tuned with Adapters, enabling highly accurate and personalized gaze predictions with minimal user input. DFT Gaze ensures low-latency and precise gaze tracking, supporting a wide range of gaze-driven tasks. We validate the performance of DFT Gaze on AEA and OpenEDS2020 benchmarks, demonstrating low angular gaze error and low latency on the edge device (Raspberry Pi 4). Furthermore, we describe applications of GazeGen, illustrating its versatility and effectiveness in various usage scenarios.

  • 8 authors
·
Nov 6, 2024 2

ViTGaze: Gaze Following with Interaction Features in Vision Transformers

Gaze following aims to interpret human-scene interactions by predicting the person's focal point of gaze. Prevailing approaches often adopt a two-stage framework, whereby multi-modality information is extracted in the initial stage for gaze target prediction. Consequently, the efficacy of these methods highly depends on the precision of the preceding modality extraction. Others use a single-modality approach with complex decoders, increasing network computational load. Inspired by the remarkable success of pre-trained plain vision transformers (ViTs), we introduce a novel single-modality gaze following framework called ViTGaze. In contrast to previous methods, it creates a novel gaze following framework based mainly on powerful encoders (relative decoder parameters less than 1%). Our principal insight is that the inter-token interactions within self-attention can be transferred to interactions between humans and scenes. Leveraging this presumption, we formulate a framework consisting of a 4D interaction encoder and a 2D spatial guidance module to extract human-scene interaction information from self-attention maps. Furthermore, our investigation reveals that ViT with self-supervised pre-training has an enhanced ability to extract correlation information. Many experiments have been conducted to demonstrate the performance of the proposed method. Our method achieves state-of-the-art (SOTA) performance among all single-modality methods (3.4% improvement in the area under curve (AUC) score, 5.1% improvement in the average precision (AP)) and very comparable performance against multi-modality methods with 59% number of parameters less.

  • 6 authors
·
Mar 19, 2024

One Eye is All You Need: Lightweight Ensembles for Gaze Estimation with Single Encoders

Gaze estimation has grown rapidly in accuracy in recent years. However, these models often fail to take advantage of different computer vision (CV) algorithms and techniques (such as small ResNet and Inception networks and ensemble models) that have been shown to improve results for other CV problems. Additionally, most current gaze estimation models require the use of either both eyes or an entire face, whereas real-world data may not always have both eyes in high resolution. Thus, we propose a gaze estimation model that implements the ResNet and Inception model architectures and makes predictions using only one eye image. Furthermore, we propose an ensemble calibration network that uses the predictions from several individual architectures for subject-specific predictions. With the use of lightweight architectures, we achieve high performance on the GazeCapture dataset with very low model parameter counts. When using two eyes as input, we achieve a prediction error of 1.591 cm on the test set without calibration and 1.439 cm with an ensemble calibration model. With just one eye as input, we still achieve an average prediction error of 2.312 cm on the test set without calibration and 1.951 cm with an ensemble calibration model. We also notice significantly lower errors on the right eye images in the test set, which could be important in the design of future gaze estimation-based tools.

  • 3 authors
·
Nov 21, 2022

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

  • 5 authors
·
Jul 18, 2024

Towards Social AI: A Survey on Understanding Social Interactions

Social interactions form the foundation of human societies. Artificial intelligence has made significant progress in certain areas, but enabling machines to seamlessly understand social interactions remains an open challenge. It is important to address this gap by endowing machines with social capabilities. We identify three key capabilities needed for effective social understanding: 1) understanding multimodal social cues, 2) understanding multi-party dynamics, and 3) understanding beliefs. Building upon these foundations, we classify and review existing machine learning works on social understanding from the perspectives of verbal, non-verbal, and multimodal social cues. The verbal branch focuses on understanding linguistic signals such as speaker intent, dialogue sentiment, and commonsense reasoning. The non-verbal branch addresses techniques for perceiving social meaning from visual behaviors such as body gestures, gaze patterns, and facial expressions. The multimodal branch covers approaches that integrate verbal and non-verbal multimodal cues to holistically interpret social interactions such as recognizing emotions, conversational dynamics, and social situations. By reviewing the scope and limitations of current approaches and benchmarks, we aim to clarify the development trajectory and illuminate the path towards more comprehensive intelligence for social understanding. We hope this survey will spur further research interest and insights into this area.

  • 11 authors
·
Sep 5, 2024

Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement

Along with the recent development of deep neural networks, appearance-based gaze estimation has succeeded considerably when training and testing within the same domain. Compared to the within-domain task, the variance of different domains makes the cross-domain performance drop severely, preventing gaze estimation deployment in real-world applications. Among all the factors, ranges of head pose and gaze are believed to play a significant role in the final performance of gaze estimation, while collecting large ranges of data is expensive. This work proposes an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation. The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset. To bridge the inevitable gap between synthetic and real images, we further propose an unsupervised domain adaptation method suitable for synthetic full-face data. We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain. Through comprehensive experiments, we show that the model only using monocular-reconstructed synthetic training data can perform comparably to real data with a large label range. Our proposed domain adaptation approach further improves the performance on multiple target domains. The code and data will be available at https://github.com/ut-vision/AdaptiveGaze.

  • 4 authors
·
May 25, 2023

DiffEye: Diffusion-Based Continuous Eye-Tracking Data Generation Conditioned on Natural Images

Numerous models have been developed for scanpath and saliency prediction, which are typically trained on scanpaths, which model eye movement as a sequence of discrete fixation points connected by saccades, while the rich information contained in the raw trajectories is often discarded. Moreover, most existing approaches fail to capture the variability observed among human subjects viewing the same image. They generally predict a single scanpath of fixed, pre-defined length, which conflicts with the inherent diversity and stochastic nature of real-world visual attention. To address these challenges, we propose DiffEye, a diffusion-based training framework designed to model continuous and diverse eye movement trajectories during free viewing of natural images. Our method builds on a diffusion model conditioned on visual stimuli and introduces a novel component, namely Corresponding Positional Embedding (CPE), which aligns spatial gaze information with the patch-based semantic features of the visual input. By leveraging raw eye-tracking trajectories rather than relying on scanpaths, DiffEye captures the inherent variability in human gaze behavior and generates high-quality, realistic eye movement patterns, despite being trained on a comparatively small dataset. The generated trajectories can also be converted into scanpaths and saliency maps, resulting in outputs that more accurately reflect the distribution of human visual attention. DiffEye is the first method to tackle this task on natural images using a diffusion model while fully leveraging the richness of raw eye-tracking data. Our extensive evaluation shows that DiffEye not only achieves state-of-the-art performance in scanpath generation but also enables, for the first time, the generation of continuous eye movement trajectories. Project webpage: https://diff-eye.github.io/

  • 3 authors
·
Sep 20

StreamGaze: Gaze-Guided Temporal Reasoning and Proactive Understanding in Streaming Videos

Streaming video understanding requires models not only to process temporally incoming frames, but also to anticipate user intention for realistic applications like AR glasses. While prior streaming benchmarks evaluate temporal reasoning, none measure whether MLLMs can interpret or leverage human gaze signals within a streaming setting. To fill this gap, we introduce StreamGaze, the first benchmark designed to evaluate how effectively MLLMs use gaze for temporal and proactive reasoning in streaming videos. StreamGaze introduces gaze-guided past, present, and proactive tasks that comprehensively evaluate streaming video understanding. These tasks assess whether models can use real-time gaze to follow shifting attention and infer user intentions from only past and currently observed frames. To build StreamGaze, we develop a gaze-video QA generation pipeline that aligns egocentric videos with raw gaze trajectories via fixation extraction, region-specific visual prompting, and scanpath construction. This pipeline produces spatio-temporally grounded QA pairs that closely reflect human perceptual dynamics. Across all StreamGaze tasks, we observe substantial performance gaps between state-of-the-art MLLMs and human performance, revealing fundamental limitations in gaze-based temporal reasoning, intention modeling, and proactive prediction. We further provide detailed analyses of gaze-prompting strategies, reasoning behaviors, and task-specific failure modes, offering deeper insight into why current MLLMs struggle and what capabilities future models must develop. All data and code will be publicly released to support continued research in gaze-guided streaming video understanding.

Social perception of faces in a vision-language model

We explore social perception of human faces in CLIP, a widely used open-source vision-language model. To this end, we compare the similarity in CLIP embeddings between different textual prompts and a set of face images. Our textual prompts are constructed from well-validated social psychology terms denoting social perception. The face images are synthetic and are systematically and independently varied along six dimensions: the legally protected attributes of age, gender, and race, as well as facial expression, lighting, and pose. Independently and systematically manipulating face attributes allows us to study the effect of each on social perception and avoids confounds that can occur in wild-collected data due to uncontrolled systematic correlations between attributes. Thus, our findings are experimental rather than observational. Our main findings are three. First, while CLIP is trained on the widest variety of images and texts, it is able to make fine-grained human-like social judgments on face images. Second, age, gender, and race do systematically impact CLIP's social perception of faces, suggesting an undesirable bias in CLIP vis-a-vis legally protected attributes. Most strikingly, we find a strong pattern of bias concerning the faces of Black women, where CLIP produces extreme values of social perception across different ages and facial expressions. Third, facial expression impacts social perception more than age and lighting as much as age. The last finding predicts that studies that do not control for unprotected visual attributes may reach the wrong conclusions on bias. Our novel method of investigation, which is founded on the social psychology literature and on the experiments involving the manipulation of individual attributes, yields sharper and more reliable observations than previous observational methods and may be applied to study biases in any vision-language model.

  • 4 authors
·
Aug 26, 2024

Modeling Eye Gaze Velocity Trajectories using GANs with Spectral Loss for Enhanced Fidelity

Accurate modeling of eye gaze dynamics is essential for advancement in human-computer interaction, neurological diagnostics, and cognitive research. Traditional generative models like Markov models often fail to capture the complex temporal dependencies and distributional nuance inherent in eye gaze trajectories data. This study introduces a GAN framework employing LSTM and CNN generators and discriminators to generate high-fidelity synthetic eye gaze velocity trajectories. We conducted a comprehensive evaluation of four GAN architectures: CNN-CNN, LSTM-CNN, CNN-LSTM, and LSTM-LSTM trained under two conditions: using only adversarial loss and using a weighted combination of adversarial and spectral losses. Our findings reveal that the LSTM-CNN architecture trained with this new loss function exhibits the closest alignment to the real data distribution, effectively capturing both the distribution tails and the intricate temporal dependencies. The inclusion of spectral regularization significantly enhances the GANs ability to replicate the spectral characteristics of eye gaze movements, leading to a more stable learning process and improved data fidelity. Comparative analysis with an HMM optimized to four hidden states further highlights the advantages of the LSTM-CNN GAN. Statistical metrics show that the HMM-generated data significantly diverges from the real data in terms of mean, standard deviation, skewness, and kurtosis. In contrast, the LSTM-CNN model closely matches the real data across these statistics, affirming its capacity to model the complexity of eye gaze dynamics effectively. These results position the spectrally regularized LSTM-CNN GAN as a robust tool for generating synthetic eye gaze velocity data with high fidelity.

  • 6 authors
·
Dec 5, 2024

SIV-Bench: A Video Benchmark for Social Interaction Understanding and Reasoning

The rich and multifaceted nature of human social interaction, encompassing multimodal cues, unobservable relations and mental states, and dynamical behavior, presents a formidable challenge for artificial intelligence. To advance research in this area, we introduce SIV-Bench, a novel video benchmark for rigorously evaluating the capabilities of Multimodal Large Language Models (MLLMs) across Social Scene Understanding (SSU), Social State Reasoning (SSR), and Social Dynamics Prediction (SDP). SIV-Bench features 2,792 video clips and 8,792 meticulously generated question-answer pairs derived from a human-LLM collaborative pipeline. It is originally collected from TikTok and YouTube, covering a wide range of video genres, presentation styles, and linguistic and cultural backgrounds. It also includes a dedicated setup for analyzing the impact of different textual cues-original on-screen text, added dialogue, or no text. Our comprehensive experiments on leading MLLMs reveal that while models adeptly handle SSU, they significantly struggle with SSR and SDP, where Relation Inference (RI) is an acute bottleneck, as further examined in our analysis. Our study also confirms the critical role of transcribed dialogue in aiding comprehension of complex social interactions. By systematically identifying current MLLMs' strengths and limitations, SIV-Bench offers crucial insights to steer the development of more socially intelligent AI. The dataset and code are available at https://kfq20.github.io/sivbench/.

  • 6 authors
·
Jun 5

Nonverbal Interaction Detection

This work addresses a new challenge of understanding human nonverbal interaction in social contexts. Nonverbal signals pervade virtually every communicative act. Our gestures, facial expressions, postures, gaze, even physical appearance all convey messages, without anything being said. Despite their critical role in social life, nonverbal signals receive very limited attention as compared to the linguistic counterparts, and existing solutions typically examine nonverbal cues in isolation. Our study marks the first systematic effort to enhance the interpretation of multifaceted nonverbal signals. First, we contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups, along with 22 atomic-level nonverbal behaviors under five broad interaction types. Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form <individual, group, interaction> from images. Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs. Central to the model is a dual multi-scale hypergraph that adeptly addresses individual-to-individual and group-to-group correlations across varying scales, facilitating interactional feature learning and eventually improving interaction prediction. Extensive experiments on NVI show that NVI-DEHR improves various baselines significantly in NVI-DET. It also exhibits leading performance on HOI-DET, confirming its versatility in supporting related tasks and strong generalization ability. We hope that our study will offer the community new avenues to explore nonverbal signals in more depth.

  • 4 authors
·
Jul 10, 2024

RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces

Carousel interfaces are widely used in e-commerce and streaming services, but little research has been devoted to them. Previous studies of interfaces for presenting search and recommendation results have focused on single ranked lists, but it appears their results cannot be extrapolated to carousels due to the added complexity. Eye tracking is a highly informative approach to understanding how users click, yet there are no eye tracking studies concerning carousels. There are very few interaction datasets on recommenders with carousel interfaces and none that contain gaze data. We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels that includes eye tracking results, clicks, cursor movements, and selection explanations. The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user. In total, 87 users and 3,477 interactions are logged. In addition to the dataset, its description and possible use cases, we provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior. Our work seeks to advance the field of carousel interfaces by providing the first dataset with eye tracking results on carousels. In this manner, we provide and encourage an empirical understanding of interactions with carousel interfaces, for building better recommender systems through gaze information, and also encourage the development of gaze-based recommenders.

  • 7 authors
·
Apr 29

I-MPN: Inductive Message Passing Network for Efficient Human-in-the-Loop Annotation of Mobile Eye Tracking Data

Comprehending how humans process visual information in dynamic settings is crucial for psychology and designing user-centered interactions. While mobile eye-tracking systems combining egocentric video and gaze signals can offer valuable insights, manual analysis of these recordings is time-intensive. In this work, we present a novel human-centered learning algorithm designed for automated object recognition within mobile eye-tracking settings. Our approach seamlessly integrates an object detector with a spatial relation-aware inductive message-passing network (I-MPN), harnessing node profile information and capturing object correlations. Such mechanisms enable us to learn embedding functions capable of generalizing to new object angle views, facilitating rapid adaptation and efficient reasoning in dynamic contexts as users navigate their environment. Through experiments conducted on three distinct video sequences, our interactive-based method showcases significant performance improvements over fixed training/testing algorithms, even when trained on considerably smaller annotated samples collected through user feedback. Furthermore, we demonstrate exceptional efficiency in data annotation processes and surpass prior interactive methods that use complete object detectors, combine detectors with convolutional networks, or employ interactive video segmentation.

  • 8 authors
·
Jun 10, 2024

SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization

Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images. While current methods adopt the paradigm of training a dedicated network end-to-end using labeled image data, they are limited in terms of generalizability and interpretability. To address these issues, we first present a simple yet well-crafted framework named {\name}, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework, providing a strong baseline for social relation recognition. Specifically, we instruct VFMs to translate image content into a textual social story, and then utilize LLMs for text-based reasoning. {\name} introduces systematic design principles to adapt VFMs and LLMs separately and bridge their gaps. Without additional model training, it achieves competitive zero-shot results on two databases while offering interpretable answers, as LLMs can generate language-based explanations for the decisions. The manual prompt design process for LLMs at the reasoning phase is tedious and an automated prompt optimization method is desired. As we essentially convert a visual classification task into a generative task of LLMs, automatic prompt optimization encounters a unique long prompt optimization issue. To address this issue, we further propose the Greedy Segment Prompt Optimization (GSPO), which performs a greedy search by utilizing gradient information at the segment level. Experimental results show that GSPO significantly improves performance, and our method also generalizes to different image styles. The code is available at https://github.com/Mengzibin/SocialGPT.

  • 6 authors
·
Oct 28, 2024 3

SocialFusion: Addressing Social Degradation in Pre-trained Vision-Language Models

Understanding social interactions from visual cues is a fundamental challenge for a socially competent AI. While powerful pre-trained vision-language models (VLMs) have shown remarkable general capabilities, they surprisingly struggle to unify and learn multiple social perception tasks simultaneously, often exhibiting negative transfer. We identify that this negative transfer stems from a critical issue we term "social degradation," whereby the general visual-linguistic pre-training process of VLMs impairs the visual encoder's ability to represent nuanced social information. We investigate this behavior further under two lenses: decodability through linear representation probing and compatibility through gradient conflict analysis, revealing that both play a role in the degradation, especially the former, which is significantly compromised in the VLM pre-training process. To address these issues, we propose SocialFusion, a unified framework that learns a minimal connection between a frozen visual encoder and a language model. Compared with existing VLMs, it exhibits positive transfer across all five social tasks, leveraging synergies between them to enhance overall performance and achieves comparable performance to task-specific state-of-the-art models on various benchmarks. Our findings suggest that current VLM pre-training strategies may be detrimental to acquiring general social competence and highlight the need for more socially-aware training paradigms.

  • 4 authors
·
Nov 30

EgoM2P: Egocentric Multimodal Multitask Pretraining

Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.

  • 6 authors
·
Jun 9

Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age

Technologies for recognizing facial attributes like race, gender, age, and emotion have several applications, such as surveillance, advertising content, sentiment analysis, and the study of demographic trends and social behaviors. Analyzing demographic characteristics based on images and analyzing facial expressions have several challenges due to the complexity of humans' facial attributes. Traditional approaches have employed CNNs and various other deep learning techniques, trained on extensive collections of labeled images. While these methods demonstrated effective performance, there remains potential for further enhancements. In this paper, we propose to utilize vision language models (VLMs) such as generative pre-trained transformer (GPT), GEMINI, large language and vision assistant (LLAVA), PaliGemma, and Microsoft Florence2 to recognize facial attributes such as race, gender, age, and emotion from images with human faces. Various datasets like FairFace, AffectNet, and UTKFace have been utilized to evaluate the solutions. The results show that VLMs are competitive if not superior to traditional techniques. Additionally, we propose "FaceScanPaliGemma"--a fine-tuned PaliGemma model--for race, gender, age, and emotion recognition. The results show an accuracy of 81.1%, 95.8%, 80%, and 59.4% for race, gender, age group, and emotion classification, respectively, outperforming pre-trained version of PaliGemma, other VLMs, and SotA methods. Finally, we propose "FaceScanGPT", which is a GPT-4o model to recognize the above attributes when several individuals are present in the image using a prompt engineered for a person with specific facial and/or physical attributes. The results underscore the superior multitasking capability of FaceScanGPT to detect the individual's attributes like hair cut, clothing color, postures, etc., using only a prompt to drive the detection and recognition tasks.

  • 4 authors
·
Oct 31, 2024

Capturing Gaze Shifts for Guidance: Cross-Modal Fusion Enhancement for VLM Hallucination Mitigation

Vision language models (VLMs) often generate hallucination, i.e., content that cannot be substantiated by either textual or visual inputs. Prior work primarily attributes this to over-reliance on linguistic prior knowledge rather than visual inputs. Some methods attempt to mitigate hallucination by amplifying visual token attention proportionally to their attention scores. However, these methods overlook the visual attention sink problem, where attention is frequently misallocated to task-irrelevant visual regions, and neglect cross-modal fusion balance by enhancing only visual attention without adjusting attention to the user query. This can result in amplifying incorrect areas while failing to properly interpret the user query. To address these challenges, we propose a simple yet effective method called Gaze Shift-Guided Cross-modal Fusion Enhancement (GIFT). GIFT pre-computes a holistic visual saliency map by tracking positive changes in visual attention, or "gaze shifts", during user query comprehension, and leverages this map to amplify attention to both salient visual information and the user query at each decoding step. This reduces the impact of visual attention sink, as irrelevant tokens exhibit minimal shifts, while ensuring balanced cross-modal fusion for well-integrated representation. Extensive experiments show that GIFT effectively mitigates hallucination in VLMs across both generative and classification tasks, achieving up to 20.7% improvement over greedy decoding, while maintaining general vision-language performance with low computational overhead.

  • 4 authors
·
Oct 24

SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions

Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.

  • 6 authors
·
Jun 28

Enabling Chatbots with Eyes and Ears: An Immersive Multimodal Conversation System for Dynamic Interactions

As chatbots continue to evolve toward human-like, real-world, interactions, multimodality remains an active area of research and exploration. So far, efforts to integrate multimodality into chatbots have primarily focused on image-centric tasks, such as visual dialogue and image-based instructions, placing emphasis on the "eyes" of human perception while neglecting the "ears", namely auditory aspects. Moreover, these studies often center around static interactions that focus on discussing the modality rather than naturally incorporating it into the conversation, which limits the richness of simultaneous, dynamic engagement. Furthermore, while multimodality has been explored in multi-party and multi-session conversations, task-specific constraints have hindered its seamless integration into dynamic, natural conversations. To address these challenges, this study aims to equip chatbots with "eyes and ears" capable of more immersive interactions with humans. As part of this effort, we introduce a new multimodal conversation dataset, Multimodal Multi-Session Multi-Party Conversation (M^3C), and propose a novel multimodal conversation model featuring multimodal memory retrieval. Our model, trained on the M^3C, demonstrates the ability to seamlessly engage in long-term conversations with multiple speakers in complex, real-world-like settings, effectively processing visual and auditory inputs to understand and respond appropriately. Human evaluations highlight the model's strong performance in maintaining coherent and dynamic interactions, demonstrating its potential for advanced multimodal conversational agents.

  • 5 authors
·
May 31

Multi-Objective Task-Aware Predictor for Image-Text Alignment

Evaluating image-text alignment while reflecting human preferences across multiple aspects is a significant issue for the development of reliable vision-language applications. It becomes especially crucial in real-world scenarios where multiple valid descriptions exist depending on contexts or user needs. However, research progress is hindered by the lack of comprehensive benchmarks and existing evaluation predictors lacking at least one of these key properties: (1) Alignment with human judgments, (2) Long-sequence processing, (3) Inference efficiency, and (4) Applicability to multi-objective scoring. To address these challenges, we propose a plug-and-play architecture to build a robust predictor, MULTI-TAP (Multi-Objective Task-Aware Predictor), capable of both multi and single-objective scoring. MULTI-TAP can produce a single overall score, utilizing a reward head built on top of a large vision-language model (LVLMs). We show that MULTI-TAP is robust in terms of application to different LVLM architectures, achieving significantly higher performance than existing metrics and even on par with the GPT-4o-based predictor, G-VEval, with a smaller size (7-8B). By training a lightweight ridge regression layer on the frozen hidden states of a pre-trained LVLM, MULTI-TAP can produce fine-grained scores for multiple human-interpretable objectives. MULTI-TAP performs better than VisionREWARD, a high-performing multi-objective reward model, in both performance and efficiency on multi-objective benchmarks and our newly released text-image-to-text dataset, EYE4ALL. Our new dataset, consisting of chosen/rejected human preferences (EYE4ALLPref) and human-annotated fine-grained scores across seven dimensions (EYE4ALLMulti), can serve as a foundation for developing more accessible AI systems by capturing the underlying preferences of users, including blind and low-vision (BLV) individuals.

  • 4 authors
·
Oct 1

Grounding Task Assistance with Multimodal Cues from a Single Demonstration

A person's demonstration often serves as a key reference for others learning the same task. However, RGB video, the dominant medium for representing these demonstrations, often fails to capture fine-grained contextual cues such as intent, safety-critical environmental factors, and subtle preferences embedded in human behavior. This sensory gap fundamentally limits the ability of Vision Language Models (VLMs) to reason about why actions occur and how they should adapt to individual users. To address this, we introduce MICA (Multimodal Interactive Contextualized Assistance), a framework that improves conversational agents for task assistance by integrating eye gaze and speech cues. MICA segments demonstrations into meaningful sub-tasks and extracts keyframes and captions that capture fine-grained intent and user-specific cues, enabling richer contextual grounding for visual question answering. Evaluations on questions derived from real-time chat-assisted task replication show that multimodal cues significantly improve response quality over frame-based retrieval. Notably, gaze cues alone achieves 93% of speech performance, and their combination yields the highest accuracy. Task type determines the effectiveness of implicit (gaze) vs. explicit (speech) cues, underscoring the need for adaptable multimodal models. These results highlight the limitations of frame-based context and demonstrate the value of multimodal signals for real-world AI task assistance.

  • 5 authors
·
May 2

GPT-4V(ision) as A Social Media Analysis Engine

Recent research has offered insights into the extraordinary capabilities of Large Multimodal Models (LMMs) in various general vision and language tasks. There is growing interest in how LMMs perform in more specialized domains. Social media content, inherently multimodal, blends text, images, videos, and sometimes audio. Understanding social multimedia content remains a challenging problem for contemporary machine learning frameworks. In this paper, we explore GPT-4V(ision)'s capabilities for social multimedia analysis. We select five representative tasks, including sentiment analysis, hate speech detection, fake news identification, demographic inference, and political ideology detection, to evaluate GPT-4V. Our investigation begins with a preliminary quantitative analysis for each task using existing benchmark datasets, followed by a careful review of the results and a selection of qualitative samples that illustrate GPT-4V's potential in understanding multimodal social media content. GPT-4V demonstrates remarkable efficacy in these tasks, showcasing strengths such as joint understanding of image-text pairs, contextual and cultural awareness, and extensive commonsense knowledge. Despite the overall impressive capacity of GPT-4V in the social media domain, there remain notable challenges. GPT-4V struggles with tasks involving multilingual social multimedia comprehension and has difficulties in generalizing to the latest trends in social media. Additionally, it exhibits a tendency to generate erroneous information in the context of evolving celebrity and politician knowledge, reflecting the known hallucination problem. The insights gleaned from our findings underscore a promising future for LMMs in enhancing our comprehension of social media content and its users through the analysis of multimodal information.

  • 9 authors
·
Nov 13, 2023

Ego-centric Predictive Model Conditioned on Hand Trajectories

In egocentric scenarios, anticipating both the next action and its visual outcome is essential for understanding human-object interactions and for enabling robotic planning. However, existing paradigms fall short of jointly modeling these aspects. Vision-Language-Action (VLA) models focus on action prediction but lack explicit modeling of how actions influence the visual scene, while video prediction models generate future frames without conditioning on specific actions, often resulting in implausible or contextually inconsistent outcomes. To bridge this gap, we propose a unified two-stage predictive framework that jointly models action and visual future in egocentric scenarios, conditioned on hand trajectories. In the first stage, we perform consecutive state modeling to process heterogeneous inputs (visual observations, language, and action history) and explicitly predict future hand trajectories. In the second stage, we introduce causal cross-attention to fuse multi-modal cues, leveraging inferred action signals to guide an image-based Latent Diffusion Model (LDM) for frame-by-frame future video generation. Our approach is the first unified model designed to handle both egocentric human activity understanding and robotic manipulation tasks, providing explicit predictions of both upcoming actions and their visual consequences. Extensive experiments on Ego4D, BridgeData, and RLBench demonstrate that our method outperforms state-of-the-art baselines in both action prediction and future video synthesis.

  • 2 authors
·
Aug 27

Stable Bias: Analyzing Societal Representations in Diffusion Models

As machine learning-enabled Text-to-Image (TTI) systems are becoming increasingly prevalent and seeing growing adoption as commercial services, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. This evaluation, however, is made more difficult by the synthetic nature of these systems' outputs; since artificial depictions of fictive humans have no inherent gender or ethnicity nor do they belong to socially-constructed groups, we need to look beyond common categorizations of diversity or representation. To address this need, we propose a new method for exploring and quantifying social biases in TTI systems by directly comparing collections of generated images designed to showcase a system's variation across social attributes -- gender and ethnicity -- and target attributes for bias evaluation -- professions and gender-coded adjectives. Our approach allows us to (i) identify specific bias trends through visualization tools, (ii) provide targeted scores to directly compare models in terms of diversity and representation, and (iii) jointly model interdependent social variables to support a multidimensional analysis. We use this approach to analyze over 96,000 images generated by 3 popular TTI systems (DALL-E 2, Stable Diffusion v 1.4 and v 2) and find that all three significantly over-represent the portion of their latent space associated with whiteness and masculinity across target attributes; among the systems studied, DALL-E 2 shows the least diversity, followed by Stable Diffusion v2 then v1.4.

  • 4 authors
·
Mar 20, 2023

MoH: Multi-Head Attention as Mixture-of-Head Attention

In this work, we upgrade the multi-head attention mechanism, the core of the Transformer model, to improve efficiency while maintaining or surpassing the previous accuracy level. We show that multi-head attention can be expressed in the summation form. Drawing on the insight that not all attention heads hold equal significance, we propose Mixture-of-Head attention (MoH), a new architecture that treats attention heads as experts in the Mixture-of-Experts (MoE) mechanism. MoH has two significant advantages: First, MoH enables each token to select the appropriate attention heads, enhancing inference efficiency without compromising accuracy or increasing the number of parameters. Second, MoH replaces the standard summation in multi-head attention with a weighted summation, introducing flexibility to the attention mechanism and unlocking extra performance potential. Extensive experiments on ViT, DiT, and LLMs demonstrate that MoH outperforms multi-head attention by using only 50%-90% of the attention heads. Moreover, we demonstrate that pre-trained multi-head attention models, such as LLaMA3-8B, can be further continue-tuned into our MoH models. Notably, MoH-LLaMA3-8B achieves an average accuracy of 64.0% across 14 benchmarks, outperforming LLaMA3-8B by 2.4% by utilizing only 75% of the attention heads. We believe the proposed MoH is a promising alternative to multi-head attention and provides a strong foundation for developing advanced and efficient attention-based models.

  • 4 authors
·
Oct 15, 2024 2