new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs

The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.

  • 9 authors
·
Sep 14, 2024

Chain-of-Model Learning for Language Model

In this paper, we propose a novel learning paradigm, termed Chain-of-Model (CoM), which incorporates the causal relationship into the hidden states of each layer as a chain style, thereby introducing great scaling efficiency in model training and inference flexibility in deployment. We introduce the concept of Chain-of-Representation (CoR), which formulates the hidden states at each layer as a combination of multiple sub-representations (i.e., chains) at the hidden dimension level. In each layer, each chain from the output representations can only view all of its preceding chains in the input representations. Consequently, the model built upon CoM framework can progressively scale up the model size by increasing the chains based on the previous models (i.e., chains), and offer multiple sub-models at varying sizes for elastic inference by using different chain numbers. Based on this principle, we devise Chain-of-Language-Model (CoLM), which incorporates the idea of CoM into each layer of Transformer architecture. Based on CoLM, we further introduce CoLM-Air by introducing a KV sharing mechanism, that computes all keys and values within the first chain and then shares across all chains. This design demonstrates additional extensibility, such as enabling seamless LM switching, prefilling acceleration and so on. Experimental results demonstrate our CoLM family can achieve comparable performance to the standard Transformer, while simultaneously enabling greater flexiblity, such as progressive scaling to improve training efficiency and offer multiple varying model sizes for elastic inference, paving a a new way toward building language models. Our code will be released in the future at: https://github.com/microsoft/CoLM.

  • 17 authors
·
May 17 8

A Model Zoo on Phase Transitions in Neural Networks

Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.

  • 6 authors
·
Apr 25 2

Black-box Model Merging for Language-Model-as-a-Service with Massive Model Repositories

Model merging refers to the process of integrating multiple distinct models into a unified model that preserves and combines the strengths and capabilities of the individual models. Most existing approaches rely on task vectors to combine models, typically under the assumption that model parameters are accessible. However, for extremely large language models (LLMs) such as GPT-4, which are often provided solely as black-box services through API interfaces (Language-Model-as-a-Service), model weights are not available to end users. This presents a significant challenge, which we refer to as black-box model merging (BMM) with massive LLMs. To address this challenge, we propose a derivative-free optimization framework based on the evolutionary algorithm (Evo-Merging) that enables effective model merging using only inference-time API queries. Our method consists of two key components: (1) sparsity-based denoising, designed to identify and filter out irrelevant or redundant information across models, and (2) sign-aware scaling, which dynamically computes optimal combination weights for the relevant models based on their performance. We also provide a formal justification, along with a theoretical analysis, for our asymmetric sparsification. Extensive experimental evaluations demonstrate that our approach achieves state-of-the-art results on a range of tasks, significantly outperforming existing strong baselines.

  • 12 authors
·
Sep 16

Overcoming Sparsity Artifacts in Crosscoders to Interpret Chat-Tuning

Model diffing is the study of how fine-tuning changes a model's representations and internal algorithms. Many behaviors of interest are introduced during fine-tuning, and model diffing offers a promising lens to interpret such behaviors. Crosscoders are a recent model diffing method that learns a shared dictionary of interpretable concepts represented as latent directions in both the base and fine-tuned models, allowing us to track how concepts shift or emerge during fine-tuning. Notably, prior work has observed concepts with no direction in the base model, and it was hypothesized that these model-specific latents were concepts introduced during fine-tuning. However, we identify two issues which stem from the crosscoders L1 training loss that can misattribute concepts as unique to the fine-tuned model, when they really exist in both models. We develop Latent Scaling to flag these issues by more accurately measuring each latent's presence across models. In experiments comparing Gemma 2 2B base and chat models, we observe that the standard crosscoder suffers heavily from these issues. Building on these insights, we train a crosscoder with BatchTopK loss and show that it substantially mitigates these issues, finding more genuinely chat-specific and highly interpretable concepts. We recommend practitioners adopt similar techniques. Using the BatchTopK crosscoder, we successfully identify a set of chat-specific latents that are both interpretable and causally effective, representing concepts such as false information and personal question, along with multiple refusal-related latents that show nuanced preferences for different refusal triggers. Overall, our work advances best practices for the crosscoder-based methodology for model diffing and demonstrates that it can provide concrete insights into how chat-tuning modifies model behavior.

  • 5 authors
·
Apr 3

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages

Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.

  • 5 authors
·
May 3, 2023

PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery

Model pruning is an effective approach for compressing large language models. However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some instruction data irrelevant to model capability recovery may introduce negative effects. To address these challenges, we propose the Post-training dAta Selection method for Efficient pruned large language model Recovery (PASER). PASER aims to identify instructions where model capabilities are most severely compromised within a certain recovery data budget. Our approach first applies manifold learning and spectral clustering to group recovery data in the semantic space, revealing capability-specific instruction sets. We then adaptively allocate the data budget to different clusters based on the degrees of model capability degradation. In each cluster, we prioritize data samples where model performance has declined dramatically. To mitigate potential negative transfer, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data.

  • 6 authors
·
Feb 18

Model Compression and Efficient Inference for Large Language Models: A Survey

Transformer based large language models have achieved tremendous success. However, the significant memory and computational costs incurred during the inference process make it challenging to deploy large models on resource-constrained devices. In this paper, we investigate compression and efficient inference methods for large language models from an algorithmic perspective. Regarding taxonomy, similar to smaller models, compression and acceleration algorithms for large language models can still be categorized into quantization, pruning, distillation, compact architecture design, dynamic networks. However, Large language models have two prominent characteristics compared to smaller models: (1) Most of compression algorithms require finetuning or even retraining the model after compression. The most notable aspect of large models is the very high cost associated with model finetuning or training. Therefore, many algorithms for large models, such as quantization and pruning, start to explore tuning-free algorithms. (2) Large models emphasize versatility and generalization rather than performance on a single task. Hence, many algorithms, such as knowledge distillation, focus on how to preserving their versatility and generalization after compression. Since these two characteristics were not very pronounced in early large models, we further distinguish large language models into medium models and ``real'' large models. Additionally, we also provide an introduction to some mature frameworks for efficient inference of large models, which can support basic compression or acceleration algorithms, greatly facilitating model deployment for users.

  • 9 authors
·
Feb 15, 2024

Generating Structured Outputs from Language Models: Benchmark and Studies

Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench

  • 9 authors
·
Jan 18

EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling

Neural language models are probabilistic models of human text. They are predominantly trained using maximum likelihood estimation (MLE), which is equivalent to minimizing the forward cross-entropy between the empirical data distribution and the model distribution. However, various degeneration phenomena are still widely observed when decoding from the distributions learned by such models. We establish that the forward cross-entropy is suboptimal as a distance metric for aligning human and model distribution due to its (1) recall-prioritization (2) negative diversity ignorance and (3) train-test mismatch. In this paper, we propose Earth Mover Distance Optimization (EMO) for auto-regressive language modeling. EMO capitalizes on the inherent properties of earth mover distance to address the aforementioned challenges. Due to the high complexity of direct computation, we further introduce a feasible upper bound for EMO to ease end-to-end training. Upon extensive evaluation of language models trained using EMO and MLE. We find that EMO demonstrates a consistently better language modeling performance than MLE across domains. Moreover, EMO demonstrates noteworthy enhancements in downstream performance with minimal fine-tuning on merely 25,000 sentences. This highlights the tremendous potential of EMO as a lightweight calibration method for enhancing large-scale pre-trained language models.

  • 3 authors
·
Oct 7, 2023

On the Parameterization and Initialization of Diagonal State Space Models

State space models (SSM) have recently been shown to be very effective as a deep learning layer as a promising alternative to sequence models such as RNNs, CNNs, or Transformers. The first version to show this potential was the S4 model, which is particularly effective on tasks involving long-range dependencies by using a prescribed state matrix called the HiPPO matrix. While this has an interpretable mathematical mechanism for modeling long dependencies, it introduces a custom representation and algorithm that can be difficult to implement. On the other hand, a recent variant of S4 called DSS showed that restricting the state matrix to be fully diagonal can still preserve the performance of the original model when using a specific initialization based on approximating S4's matrix. This work seeks to systematically understand how to parameterize and initialize such diagonal state space models. While it follows from classical results that almost all SSMs have an equivalent diagonal form, we show that the initialization is critical for performance. We explain why DSS works mathematically, by showing that the diagonal restriction of S4's matrix surprisingly recovers the same kernel in the limit of infinite state dimension. We also systematically describe various design choices in parameterizing and computing diagonal SSMs, and perform a controlled empirical study ablating the effects of these choices. Our final model S4D is a simple diagonal version of S4 whose kernel computation requires just 2 lines of code and performs comparably to S4 in almost all settings, with state-of-the-art results for image, audio, and medical time-series domains, and averaging 85\% on the Long Range Arena benchmark.

  • 4 authors
·
Jun 23, 2022

Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends

The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.

  • 5 authors
·
Jan 23, 2024 1

Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers

This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.

  • 1 authors
·
Aug 28, 2024

Talking Heads: Understanding Inter-layer Communication in Transformer Language Models

Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. By analyzing particular mechanism LMs use to accomplish this, we find that it is also used to recall items from a list, and show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by specific later layers, forming low-rank communication channels between layers. By decomposing attention head weight matrices with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.

  • 3 authors
·
Jun 13, 2024

LLM-enabled Instance Model Generation

In the domain of model-based engineering, models are essential components that enable system design and analysis. Traditionally, the creation of these models has been a manual process requiring not only deep modeling expertise but also substantial domain knowledge of target systems. With the rapid advancement of generative artificial intelligence, large language models (LLMs) show potential for automating model generation. This work explores the generation of instance models using LLMs, focusing specifically on producing XMI-based instance models from Ecore metamodels and natural language specifications. We observe that current LLMs struggle to directly generate valid XMI models. To address this, we propose a two-step approach: first, using LLMs to produce a simplified structured output containing all necessary instance model information, namely a conceptual instance model, and then compiling this intermediate representation into a valid XMI file. The conceptual instance model is format-independent, allowing it to be transformed into various modeling formats via different compilers. The feasibility of the proposed method has been demonstrated using several LLMs, including GPT-4o, o1-preview, Llama 3.1 (8B and 70B). Results show that the proposed method significantly improves the usability of LLMs for instance model generation tasks. Notably, the smaller open-source model, Llama 3.1 70B, demonstrated performance comparable to proprietary GPT models within the proposed framework.

  • 5 authors
·
Mar 28

KIND: Knowledge Integration and Diversion in Diffusion Models

Pre-trained models have become the preferred backbone due to the expansion of model parameters, with techniques like Parameter-Efficient Fine-Tuning (PEFTs) typically fixing the parameters of these models. However, pre-trained models may not always be optimal, especially when there are discrepancies between training tasks and target tasks, potentially resulting in negative transfer. To address this, we introduce KIND, which performs Knowledge INtegration and Diversion in diffusion models. KIND first integrates knowledge by decomposing parameter matrices of models using U, Sigma, and V matrices, formally inspired by singular value decomposition (SVD). Then it explicitly partitions the components of these matrices into learngenes and tailors to condense common and class-specific knowledge, respectively, through a class gate. In this way, KIND redefines traditional pre-training methods by adjusting training objectives from maximizing model performance on current tasks to condensing transferable common knowledge, leveraging the Learngene framework. We conduct experiments on ImageNet-1K and compare KIND with PEFT and other learngene methods. Results indicate that KIND achieves state-of-the-art performance compared to other PEFT and learngene methods. Specifically, the images generated by KIND achieves more than 6.54 and 1.07 decrease in FID and sFID on DiT-L/2, utilizing only 45.4M trainable parameters and saving at least 35.4G FLOPs in computational cost.

  • 5 authors
·
Aug 14, 2024

Efficiently Modeling Long Sequences with Structured State Spaces

A central goal of sequence modeling is designing a single principled model that can address sequence data across a range of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long sequences of 10000 or more steps. A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically. However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Our technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling tasks, while performing generation 60times faster (iii) SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.

  • 3 authors
·
Oct 30, 2021

Class Machine Unlearning for Complex Data via Concepts Inference and Data Poisoning

In current AI era, users may request AI companies to delete their data from the training dataset due to the privacy concerns. As a model owner, retraining a model will consume significant computational resources. Therefore, machine unlearning is a new emerged technology to allow model owner to delete requested training data or a class with little affecting on the model performance. However, for large-scaling complex data, such as image or text data, unlearning a class from a model leads to a inferior performance due to the difficulty to identify the link between classes and model. An inaccurate class deleting may lead to over or under unlearning. In this paper, to accurately defining the unlearning class of complex data, we apply the definition of Concept, rather than an image feature or a token of text data, to represent the semantic information of unlearning class. This new representation can cut the link between the model and the class, leading to a complete erasing of the impact of a class. To analyze the impact of the concept of complex data, we adopt a Post-hoc Concept Bottleneck Model, and Integrated Gradients to precisely identify concepts across different classes. Next, we take advantage of data poisoning with random and targeted labels to propose unlearning methods. We test our methods on both image classification models and large language models (LLMs). The results consistently show that the proposed methods can accurately erase targeted information from models and can largely maintain the performance of the models.

  • 5 authors
·
May 24, 2024

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.

  • 7 authors
·
Oct 2, 2024 3

A Hitchhiker's Guide to Scaling Law Estimation

Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets. This provides an efficient way for practitioners and researchers alike to compare pretraining decisions involving optimizers, datasets, and model architectures. Despite the widespread use of scaling laws to model the dynamics of language model training, there has been little work on understanding how to best estimate and interpret them. We collect (and release) a large-scale dataset containing losses and downstream evaluations for 485 previously published pretrained models. We use these to estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families. We find that fitting scaling laws to intermediate checkpoints of training runs (and not just their final losses) substantially improves accuracy, and that -- all else equal -- estimates of performance are generally most accurate when derived from other models of similar sizes. However, because there is a significant degree of variability across model seeds, training multiple small models is sometimes more useful than training a single large one. Moreover, while different model families differ scaling behavior, they are often similar enough that a target model's behavior can be predicted from a single model with the same architecture, along with scaling parameter estimates derived from other model families.

  • 3 authors
·
Oct 15, 2024

PELA: Learning Parameter-Efficient Models with Low-Rank Approximation

Applying a pre-trained large model to downstream tasks is prohibitive under resource-constrained conditions. Recent dominant approaches for addressing efficiency issues involve adding a few learnable parameters to the fixed backbone model. This strategy, however, leads to more challenges in loading large models for downstream fine-tuning with limited resources. In this paper, we propose a novel method for increasing the parameter efficiency of pre-trained models by introducing an intermediate pre-training stage. To this end, we first employ low-rank approximation to compress the original large model and then devise a feature distillation module and a weight perturbation regularization module. These modules are specifically designed to enhance the low-rank model. In particular, we update only the low-rank model while freezing the backbone parameters during pre-training. This allows for direct and efficient utilization of the low-rank model for downstream fine-tuning tasks. The proposed method achieves both efficiencies in terms of required parameters and computation time while maintaining comparable results with minimal modifications to the backbone architecture. Specifically, when applied to three vision-only and one vision-language Transformer models, our approach often demonstrates a merely sim0.6 point decrease in performance while reducing the original parameter size by 1/3 to 2/3.

  • 3 authors
·
Oct 16, 2023

Parameter Competition Balancing for Model Merging

While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: https://github.com/duguodong7/pcb-merging.

  • 11 authors
·
Oct 3, 2024

Towards Reversible Model Merging For Low-rank Weights

Model merging aims to combine multiple fine-tuned models into a single set of weights that performs well across all source tasks. While prior work has shown that merging can approximate the performance of individual fine-tuned models for each task, it largely overlooks scenarios where models are compressed into low-rank representations, either through low-rank adaptation (LoRA) or post-training singular value decomposition (SVD). We first demonstrate that applying conventional merging methods to low-rank weights leads to severe performance degradation in the merged model. Motivated by this phenomenon, we propose a fundamentally different approach: instead of collapsing all adapters into one set of weights, we construct a compact basis (e.g., an equivalent of holding two or more models) from which original task-specific models can be recovered via linear combination. This reframes merging as generating a reconstruction-capable model space rather than producing a single merged model. Crucially, this allows us to ``revert'' to each individual model when needed, recognizing that no merged model can consistently outperform one specialized for its task. Building on this insight, we introduce our method, Reversible Model Merging (RMM), an efficient, data-free, and flexible method that provides a closed-form solution for selecting the optimal basis of model weights and task-specific coefficients for linear combination. Extensive experiments across diverse datasets and model scales demonstrate that RMM consistently outperforms existing merging approaches, preserving the performance of low-rank compressed models by a significant margin.

  • 2 authors
·
Oct 15

Blockwise Compression of Transformer-based Models without Retraining

Transformer-based models, exemplified by GPT-3, ChatGPT, and GPT-4, have recently garnered considerable attention in both academia and industry due to their promising performance in general language tasks. Nevertheless, these models typically involve computationally encoding processes, and in some cases, decoding processes as well, both of which are fundamentally large-scale matrix multiplication. These operations bring the inevitable challenges of massive computation resources and huge memory footprint, usually requiring at least 10^23 FLOPs and hundreds of gigabytes, respectively. A common method to address this issue is to reduce the computational and memory requirements by applying layerwise quantization to the transformer, replacing the usual fp32 data type with a low-bit equivalent. Unfortunately, this method often leads to decreased model accuracy and necessitates time-consuming retraining. Such retraining not only requires fine-tuning skills but also substantial computational resources, posing challenges for users. To specifically tackle these issues, we propose BCT, a framework of blockwise compression for transformers without retraining, aiming to facilitate model deployment. Unlike layerwise compression methods, BCT achieves finer compression of the entire transformer by operating blockwise. This method mitigates data distribution deviation caused by quantization, eliminating the requirement for retraining. BCT effectively compresses all components of the model, including but not limited to the embedding, matrix multiplication, GELU, Softmax, layer normalization, and intermediate results. In a case study, an efficient model is compressed by BCT achieving up to 7.988x compression. Subsequently, we also evaluate it on several General Language Understanding Evaluation (GLUE) datasets.

  • 2 authors
·
Apr 3, 2023

Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion

This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models' behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics -- one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-the-art large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.

  • 6 authors
·
Jan 23, 2024 2

Stationary Representations: Optimally Approximating Compatibility and Implications for Improved Model Replacements

Learning compatible representations enables the interchangeable use of semantic features as models are updated over time. This is particularly relevant in search and retrieval systems where it is crucial to avoid reprocessing of the gallery images with the updated model. While recent research has shown promising empirical evidence, there is still a lack of comprehensive theoretical understanding about learning compatible representations. In this paper, we demonstrate that the stationary representations learned by the d-Simplex fixed classifier optimally approximate compatibility representation according to the two inequality constraints of its formal definition. This not only establishes a solid foundation for future works in this line of research but also presents implications that can be exploited in practical learning scenarios. An exemplary application is the now-standard practice of downloading and fine-tuning new pre-trained models. Specifically, we show the strengths and critical issues of stationary representations in the case in which a model undergoing sequential fine-tuning is asynchronously replaced by downloading a better-performing model pre-trained elsewhere. Such a representation enables seamless delivery of retrieval service (i.e., no reprocessing of gallery images) and offers improved performance without operational disruptions during model replacement. Code available at: https://github.com/miccunifi/iamcl2r.

  • 4 authors
·
May 4, 2024

Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors

Modeling long-range dependencies across sequences is a longstanding goal in machine learning and has led to architectures, such as state space models, that dramatically outperform Transformers on long sequences. However, these impressive empirical gains have been by and large demonstrated on benchmarks (e.g. Long Range Arena), where models are randomly initialized and trained to predict a target label from an input sequence. In this work, we show that random initialization leads to gross overestimation of the differences between architectures and that pretraining with standard denoising objectives, using only the downstream task data, leads to dramatic gains across multiple architectures and to very small gaps between Transformers and state space models (SSMs). In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained, and we improve the best reported results of SSMs on the PathX-256 task by 20 absolute points. Subsequently, we analyze the utility of previously-proposed structured parameterizations for SSMs and show they become mostly redundant in the presence of data-driven initialization obtained through pretraining. Our work shows that, when evaluating different architectures on supervised tasks, incorporation of data-driven priors via pretraining is essential for reliable performance estimation, and can be done efficiently.

  • 3 authors
·
Oct 4, 2023

Know2Vec: A Black-Box Proxy for Neural Network Retrieval

For general users, training a neural network from scratch is usually challenging and labor-intensive. Fortunately, neural network zoos enable them to find a well-performing model for directly use or fine-tuning it in their local environments. Although current model retrieval solutions attempt to convert neural network models into vectors to avoid complex multiple inference processes required for model selection, it is still difficult to choose a suitable model due to inaccurate vectorization and biased correlation alignment between the query dataset and models. From the perspective of knowledge consistency, i.e., whether the knowledge possessed by the model can meet the needs of query tasks, we propose a model retrieval scheme, named Know2Vec, that acts as a black-box retrieval proxy for model zoo. Know2Vec first accesses to models via a black-box interface in advance, capturing vital decision knowledge from models while ensuring their privacy. Next, it employs an effective encoding technique to transform the knowledge into precise model vectors. Secondly, it maps the user's query task to a knowledge vector by probing the semantic relationships within query samples. Furthermore, the proxy ensures the knowledge-consistency between query vector and model vectors within their alignment space, which is optimized through the supervised learning with diverse loss functions, and finally it can identify the most suitable model for a given task during the inference stage. Extensive experiments show that our Know2Vec achieves superior retrieval accuracy against the state-of-the-art methods in diverse neural network retrieval tasks.

  • 6 authors
·
Dec 19, 2024

Towards Semantic Versioning of Open Pre-trained Language Model Releases on Hugging Face

The proliferation of open Pre-trained Language Models (PTLMs) on model registry platforms like Hugging Face (HF) presents both opportunities and challenges for companies building products around them. Similar to traditional software dependencies, PTLMs continue to evolve after a release. However, the current state of release practices of PTLMs on model registry platforms are plagued by a variety of inconsistencies, such as ambiguous naming conventions and inaccessible model training documentation. Given the knowledge gap on current PTLM release practices, our empirical study uses a mixed-methods approach to analyze the releases of 52,227 PTLMs on the most well-known model registry, HF. Our results reveal 148 different naming practices for PTLM releases, with 40.87% of changes to model weight files not represented in the adopted name-based versioning practice or their documentation. In addition, we identified that the 52,227 PTLMs are derived from only 299 different base models (the modified original models used to create 52,227 PTLMs), with Fine-tuning and Quantization being the most prevalent modification methods applied to these base models. Significant gaps in release transparency, in terms of training dataset specifications and model card availability, still exist, highlighting the need for standardized documentation. While we identified a model naming practice explicitly differentiating between major and minor PTLM releases, we did not find any significant difference in the types of changes that went into either type of releases, suggesting that major/minor version numbers for PTLMs often are chosen arbitrarily. Our findings provide valuable insights to improve PTLM release practices, nudging the field towards more formal semantic versioning practices.

  • 5 authors
·
Sep 16, 2024

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

  • 4 authors
·
Sep 16, 2024

Learning on Model Weights using Tree Experts

The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.

  • 4 authors
·
Oct 17, 2024

Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration

Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely hidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the pseudo hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.

  • 8 authors
·
Apr 18, 2024 2

Discrete Key-Value Bottleneck

Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant. Challenges emerge with non-stationary training data streams such as continual learning. One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning. Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks. In the present work, we propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes. Our paradigm will be to encode; process the representation via a discrete bottleneck; and decode. Here, the input is fed to the pre-trained encoder, the output of the encoder is used to select the nearest keys, and the corresponding values are fed to the decoder to solve the current task. The model can only fetch and re-use a sparse number of these key-value pairs during inference, enabling localized and context-dependent model updates. We theoretically investigate the ability of the discrete key-value bottleneck to minimize the effect of learning under distribution shifts and show that it reduces the complexity of the hypothesis class. We empirically verify the proposed method under challenging class-incremental learning scenarios and show that the proposed model - without any task boundaries - reduces catastrophic forgetting across a wide variety of pre-trained models, outperforming relevant baselines on this task.

  • 7 authors
·
Jul 22, 2022

Using Degeneracy in the Loss Landscape for Mechanistic Interpretability

Mechanistic Interpretability aims to reverse engineer the algorithms implemented by neural networks by studying their weights and activations. An obstacle to reverse engineering neural networks is that many of the parameters inside a network are not involved in the computation being implemented by the network. These degenerate parameters may obfuscate internal structure. Singular learning theory teaches us that neural network parameterizations are biased towards being more degenerate, and parameterizations with more degeneracy are likely to generalize further. We identify 3 ways that network parameters can be degenerate: linear dependence between activations in a layer; linear dependence between gradients passed back to a layer; ReLUs which fire on the same subset of datapoints. We also present a heuristic argument that modular networks are likely to be more degenerate, and we develop a metric for identifying modules in a network that is based on this argument. We propose that if we can represent a neural network in a way that is invariant to reparameterizations that exploit the degeneracies, then this representation is likely to be more interpretable, and we provide some evidence that such a representation is likely to have sparser interactions. We introduce the Interaction Basis, a tractable technique to obtain a representation that is invariant to degeneracies from linear dependence of activations or Jacobians.

  • 8 authors
·
May 17, 2024

Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads

The inference process in Large Language Models (LLMs) is often limited due to the absence of parallelism in the auto-regressive decoding process, resulting in most operations being restricted by the memory bandwidth of accelerators. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa introduces only minimal overhead in terms of single-step latency while substantially reducing the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.

  • 7 authors
·
Jan 19, 2024 3

Trans-LoRA: towards data-free Transferable Parameter Efficient Finetuning

Low-rank adapters (LoRA) and their variants are popular parameter-efficient fine-tuning (PEFT) techniques that closely match full model fine-tune performance while requiring only a small number of additional parameters. These additional LoRA parameters are specific to the base model being adapted. When the base model needs to be deprecated and replaced with a new one, all the associated LoRA modules need to be re-trained. Such re-training requires access to the data used to train the LoRA for the original base model. This is especially problematic for commercial cloud applications where the LoRA modules and the base models are hosted by service providers who may not be allowed to host proprietary client task data. To address this challenge, we propose Trans-LoRA -- a novel method for lossless, nearly data-free transfer of LoRAs across base models. Our approach relies on synthetic data to transfer LoRA modules. Using large language models, we design a synthetic data generator to approximate the data-generating process of the observed task data subset. Training on the resulting synthetic dataset transfers LoRA modules to new models. We show the effectiveness of our approach using both LLama and Gemma model families. Our approach achieves lossless (mostly improved) LoRA transfer between models within and across different base model families, and even between different PEFT methods, on a wide variety of tasks.

  • 7 authors
·
May 27, 2024

Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces

The task of "unlearning" certain concepts in large language models (LLMs) has attracted immense attention recently, due to its importance for mitigating undesirable model behaviours, such as the generation of harmful, private, or incorrect information. Current protocols to evaluate unlearning methods largely rely on behavioral tests, without monitoring the presence of unlearned knowledge within the model's parameters. This residual knowledge can be adversarially exploited to recover the erased information post-unlearning. We argue that unlearning should also be evaluated internally, by considering changes in the parametric knowledge traces of the unlearned concepts. To this end, we propose a general methodology for eliciting directions in the parameter space (termed "concept vectors") that encode concrete concepts, and construct ConceptVectors, a benchmark dataset containing hundreds of common concepts and their parametric knowledge traces within two open-source LLMs. Evaluation on ConceptVectors shows that existing unlearning methods minimally impact concept vectors, while directly ablating these vectors demonstrably removes the associated knowledge from the LLMs and significantly reduces their susceptibility to adversarial manipulation. Our results highlight limitations in behavioral-based unlearning evaluations and call for future work to include parametric-based evaluations. To support this, we release our code and benchmark at https://github.com/yihuaihong/ConceptVectors.

  • 5 authors
·
Jun 17, 2024 2

MUSCLE: A Model Update Strategy for Compatible LLM Evolution

Large Language Models (LLMs) are frequently updated due to data or architecture changes to improve their performance. When updating models, developers often focus on increasing overall performance metrics with less emphasis on being compatible with previous model versions. However, users often build a mental model of the functionality and capabilities of a particular machine learning model they are interacting with. They have to adapt their mental model with every update -- a draining task that can lead to user dissatisfaction. In practice, fine-tuned downstream task adapters rely on pretrained LLM base models. When these base models are updated, these user-facing downstream task models experience instance regression or negative flips -- previously correct instances are now predicted incorrectly. This happens even when the downstream task training procedures remain identical. Our work aims to provide seamless model updates to a user in two ways. First, we provide evaluation metrics for a notion of compatibility to prior model versions, specifically for generative tasks but also applicable for discriminative tasks. We observe regression and inconsistencies between different model versions on a diverse set of tasks and model updates. Second, we propose a training strategy to minimize the number of inconsistencies in model updates, involving training of a compatibility model that can enhance task fine-tuned language models. We reduce negative flips -- instances where a prior model version was correct, but a new model incorrect -- by up to 40% from Llama 1 to Llama 2.

  • 7 authors
·
Jul 12, 2024 2

From Text to Source: Results in Detecting Large Language Model-Generated Content

The widespread use of Large Language Models (LLMs), celebrated for their ability to generate human-like text, has raised concerns about misinformation and ethical implications. Addressing these concerns necessitates the development of robust methods to detect and attribute text generated by LLMs. This paper investigates "Cross-Model Detection," evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training. The study comprehensively explores various LLM sizes and families, and assesses the impact of conversational fine-tuning techniques on classifier generalization. The research also delves into Model Attribution, encompassing source model identification, model family classification, and model size classification. Our results reveal several key findings: a clear inverse relationship between classifier effectiveness and model size, with larger LLMs being more challenging to detect, especially when the classifier is trained on data from smaller models. Training on data from similarly sized LLMs can improve detection performance from larger models but may lead to decreased performance when dealing with smaller models. Additionally, model attribution experiments show promising results in identifying source models and model families, highlighting detectable signatures in LLM-generated text. Overall, our study contributes valuable insights into the interplay of model size, family, and training data in LLM detection and attribution.

  • 3 authors
·
Sep 23, 2023

LLM See, LLM Do: Guiding Data Generation to Target Non-Differentiable Objectives

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs) via distilled data. To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying the consequences of synthetic data integration. We provide one of the most comprehensive studies to-date of how the source of synthetic data shapes models' internal biases, calibration and generations' textual attributes and preferences. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear "neutral". which invites the question whether this sensitivity can be exploited for good. Our findings invite the question can we explicitly steer the models towards the properties we want at test time by exploiting the data generation process? This would have historically been considered infeasible due to the cost of collecting data with a specific characteristic or objective in mind. However, improvement in the quality of synthetic data, as well as a shift towards general-purpose models designed to follow a diverse way of instructions, means this question is timely. We propose active inheritance as a term to describe intentionally constraining synthetic data according to a non-differentiable objective. We demonstrate how active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes, e.g. high lexical diversity or low toxicity.

  • 5 authors
·
Jul 1, 2024

Is Mamba Effective for Time Series Forecasting?

In the realm of time series forecasting (TSF), it is imperative for models to adeptly discern and distill hidden patterns within historical time series data to forecast future states. Transformer-based models exhibit formidable efficacy in TSF, primarily attributed to their advantage in apprehending these patterns. However, the quadratic complexity of the Transformer leads to low computational efficiency and high costs, which somewhat hinders the deployment of the TSF model in real-world scenarios. Recently, Mamba, a selective state space model, has gained traction due to its ability to process dependencies in sequences while maintaining near-linear complexity. For TSF tasks, these characteristics enable Mamba to comprehend hidden patterns as the Transformer and reduce computational overhead compared to the Transformer. Therefore, we propose a Mamba-based model named Simple-Mamba (S-Mamba) for TSF. Specifically, we tokenize the time points of each variate autonomously via a linear layer. A bidirectional Mamba layer is utilized to extract inter-variate correlations and a Feed-Forward Network is set to learn temporal dependencies. Finally, the generation of forecast outcomes through a linear mapping layer. Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance. Furthermore, we conduct extensive experiments to explore Mamba's potential in TSF tasks. Our code is available at https://github.com/wzhwzhwzh0921/S-D-Mamba.

  • 8 authors
·
Mar 17, 2024

DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs

Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.

  • 4 authors
·
Apr 18

Extracting alignment data in open models

In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of 10times) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.

google Google
·
Oct 21 5

Disentanglement via Latent Quantization

In disentangled representation learning, a model is asked to tease apart a dataset's underlying sources of variation and represent them independently of one another. Since the model is provided with no ground truth information about these sources, inductive biases take a paramount role in enabling disentanglement. In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space. Concretely, we do this by (i) quantizing the latent space into discrete code vectors with a separate learnable scalar codebook per dimension and (ii) applying strong model regularization via an unusually high weight decay. Intuitively, the latent space design forces the encoder to combinatorially construct codes from a small number of distinct scalar values, which in turn enables the decoder to assign a consistent meaning to each value. Regularization then serves to drive the model towards this parsimonious strategy. We demonstrate the broad applicability of this approach by adding it to both basic data-reconstructing (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models. For reliable evaluation, we also propose InfoMEC, a new set of metrics for disentanglement that is cohesively grounded in information theory and fixes well-established shortcomings in previous metrics. Together with regularization, latent quantization dramatically improves the modularity and explicitness of learned representations on a representative suite of benchmark datasets. In particular, our quantized-latent autoencoder (QLAE) consistently outperforms strong methods from prior work in these key disentanglement properties without compromising data reconstruction.

  • 5 authors
·
May 28, 2023 1

Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning

We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.

  • 8 authors
·
Jul 18 5

Efficient Model Development through Fine-tuning Transfer

Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.

  • 5 authors
·
Mar 25 2

A Markov Categorical Framework for Language Modeling

Auto-regressive language models factorize sequence probabilities and are trained by minimizing the negative log-likelihood (NLL) objective. While empirically powerful, a deep theoretical understanding of why this simple objective yields such versatile representations remains elusive. This work introduces a unifying analytical framework using Markov Categories (MCs) to deconstruct the AR generation process and the NLL objective. We model the single-step generation map as a composition of Markov kernels in the category Stoch. This compositional view, when enriched with statistical divergences, allows us to dissect information flow and learned geometry. Our framework makes three main contributions. First, we provide a formal, information-theoretic rationale for the success of modern speculative decoding methods like EAGLE, quantifying the information surplus in hidden states that these methods exploit. Second, we formalize how NLL minimization forces the model to learn not just the next token, but the data's intrinsic conditional stochasticity, a process we analyze using categorical entropy. Third, and most centrally, we prove that NLL training acts as an implicit form of spectral contrastive learning. By analyzing the information geometry of the model's prediction head, we show that NLL implicitly forces the learned representation space to align with the eigenspectrum of a predictive similarity operator, thereby learning a geometrically structured space without explicit contrastive pairs. This compositional and information-geometric perspective reveals the deep structural principles underlying the effectiveness of modern LMs. Project Page: https://github.com/asiresearch/lm-theory

  • 1 authors
·
Jul 25

Specializing Smaller Language Models towards Multi-Step Reasoning

The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models (100+ billion parameters). We show that such abilities can, in fact, be distilled down from GPT-3.5 (ge 175B) to T5 variants (le 11B). We propose model specialization, to specialize the model's ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power, but are spread on a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we concentrate their capacity on a specific target task, the model can achieve a decent improved performance. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1). there exists a very complex balance/ tradeoff between language models' multi-dimensional abilities; (2). by paying the price of decreased generic ability, we can clearly lift up the scaling curve of models smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the tuning data format, the start model checkpoint, and a new model selection method. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs.

  • 5 authors
·
Jan 30, 2023

Fantastic Gains and Where to Find Them: On the Existence and Prospect of General Knowledge Transfer between Any Pretrained Model

Training deep networks requires various design decisions regarding for instance their architecture, data augmentation, or optimization. In this work, we find these training variations to result in networks learning unique feature sets from the data. Using public model libraries comprising thousands of models trained on canonical datasets like ImageNet, we observe that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other -- independent of overall performance. Given any arbitrary pairing of pretrained models and no external rankings (such as separate test sets, e.g. due to data privacy), we investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation -- a task made particularly difficult as additional knowledge can be contained in stronger, equiperformant or weaker models. Yet facilitating robust transfer in scenarios agnostic to pretrained model pairings would unlock auxiliary gains and knowledge fusion from any model repository without restrictions on model and problem specifics - including from weaker, lower-performance models. This work therefore provides an initial, in-depth exploration on the viability of such general-purpose knowledge transfer. Across large-scale experiments, we first reveal the shortcomings of standard knowledge distillation techniques, and then propose a much more general extension through data partitioning for successful transfer between nearly all pretrained models, which we show can also be done unsupervised. Finally, we assess both the scalability and impact of fundamental model properties on successful model-agnostic knowledge transfer.

  • 6 authors
·
Oct 26, 2023

When Alignment Hurts: Decoupling Representational Spaces in Multilingual Models

Alignment with high-resource standard languages is often assumed to aid the modeling of related low-resource varieties. We challenge this assumption by demonstrating that excessive representational entanglement with a dominant variety, such as Modern Standard Arabic (MSA) in relation to Arabic dialects, can actively hinder generative modeling. We present the first comprehensive causal study of this phenomenon by analyzing and directly intervening in the internal representation geometry of large language models (LLMs). Our key contribution is an online variational probing framework that continuously estimates the subspace of the standard variety during fine-tuning, enabling projection-based decoupling from this space. While our study uses Arabic as a case due to its unusually rich parallel resources across 25 dialects, the broader motivation is methodological: dialectal MT serves as a controlled proxy for generative tasks where comparable multi-variety corpora are unavailable. Across 25 dialects, our intervention improves generation quality by up to +4.9 chrF++ and +2.0 on average compared to standard fine-tuning, despite a measured tradeoff in standard-language performance. These results provide causal evidence that subspace dominance by high-resource varieties can restrict generative capacity for related varieties. More generally, we unify geometric and information-theoretic probing with subspace-level causal interventions, offering practical tools for improving generative modeling in closely related language families and, more broadly, for controlling representational allocation in multilingual and multi-domain LLMs. Code will be released.

  • 7 authors
·
Aug 18

LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step

Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.

  • 3 authors
·
Feb 24, 2024

FreezeAsGuard: Mitigating Illegal Adaptation of Diffusion Models via Selective Tensor Freezing

Text-to-image diffusion models can be fine-tuned in custom domains to adapt to specific user preferences, but such unconstrained adaptability has also been utilized for illegal purposes, such as forging public figures' portraits and duplicating copyrighted artworks. Most existing work focuses on detecting the illegally generated contents, but cannot prevent or mitigate illegal adaptations of diffusion models. Other schemes of model unlearning and reinitialization, similarly, cannot prevent users from relearning the knowledge of illegal model adaptation with custom data. In this paper, we present FreezeAsGuard, a new technique that addresses these limitations and enables irreversible mitigation of illegal adaptations of diffusion models. The basic approach is that the model publisher selectively freezes tensors in pre-trained diffusion models that are critical to illegal model adaptations, to mitigate the fine-tuned model's representation power in illegal domains but minimize the impact on legal model adaptations in other domains. Such tensor freezing can be enforced via APIs provided by the model publisher for fine-tuning, can motivate users' adoption due to its computational savings. Experiment results with datasets in multiple domains show that FreezeAsGuard provides stronger power in mitigating illegal model adaptations of generating fake public figures' portraits, while having the minimum impact on model adaptation in other legal domains. The source code is available at: https://github.com/pittisl/FreezeAsGuard/

  • 2 authors
·
May 23, 2024

Idioms: Neural Decompilation With Joint Code and Type Prediction

Decompilers are important tools for reverse engineers that help them analyze software at a higher level of abstraction than assembly. Unfortunately, because compilation is lossy, deterministic decompilers produce code that is missing many of the details that make source code readable in the first place, like variable names and types. Neural decompilers, on the other hand, offer the ability to statistically fill in these details. Existing work in neural decompilation, however, suffers from substantial drawbacks that limits its ability to handle real code: it is unable to handle user-defined composite types, which are essential to fully specifying many functions' semantics, or require test cases. In this work, we introduce a new training process to finetune any LLM into a neural decompiler capable of generating the appropriate user-defined types alongside the decompilation. We introduce a new dataset, Realtype, that includes substantially more complicated and realistic types than existing neural decompilation benchmarks. Motivated by the intuition that different parts of data structures can be operated upon by different parts of the program, we show that interprocedural context can help improve neural decompilers' ability to handle user-defined types. We show that our training process yields state-of-the-art results in neural decompilation. We also publicly release the Idioms series of finetuned neural decompilation models in support of open science. In summary, we identify the need for joint code and type prediction, show that it is a hard problem, and take the first steps towards solving it.

  • 3 authors
·
Feb 6

Towards Scalable Exact Machine Unlearning Using Parameter-Efficient Fine-Tuning

Machine unlearning is the process of efficiently removing the influence of a training data instance from a trained machine learning model without retraining it from scratch. A popular subclass of unlearning approaches is exact machine unlearning, which focuses on techniques that explicitly guarantee the removal of the influence of a data instance from a model. Exact unlearning approaches use a machine learning model in which individual components are trained on disjoint subsets of the data. During deletion, exact unlearning approaches only retrain the affected components rather than the entire model. While existing approaches reduce retraining costs, it can still be expensive for an organization to retrain a model component as it requires halting a system in production, which leads to service failure and adversely impacts customers. To address these challenges, we introduce an exact unlearning framework -- Sequence-aware Sharded Sliced Training (S3T), designed to enhance the deletion capabilities of an exact unlearning system while minimizing the impact on model's performance. At the core of S3T, we utilize a lightweight parameter-efficient fine-tuning approach that enables parameter isolation by sequentially training layers with disjoint data slices. This enables efficient unlearning by simply deactivating the layers affected by data deletion. Furthermore, to reduce the retraining cost and improve model performance, we train the model on multiple data sequences, which allows S3T to handle an increased number of deletion requests. Both theoretically and empirically, we demonstrate that S3T attains superior deletion capabilities and enhanced performance compared to baselines across a wide range of settings.

  • 5 authors
·
Jun 23, 2024

Fast Machine Unlearning Without Retraining Through Selective Synaptic Dampening

Machine unlearning, the ability for a machine learning model to forget, is becoming increasingly important to comply with data privacy regulations, as well as to remove harmful, manipulated, or outdated information. The key challenge lies in forgetting specific information while protecting model performance on the remaining data. While current state-of-the-art methods perform well, they typically require some level of retraining over the retained data, in order to protect or restore model performance. This adds computational overhead and mandates that the training data remain available and accessible, which may not be feasible. In contrast, other methods employ a retrain-free paradigm, however, these approaches are prohibitively computationally expensive and do not perform on par with their retrain-based counterparts. We present Selective Synaptic Dampening (SSD), a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data. First, SSD uses the Fisher information matrix of the training and forgetting data to select parameters that are disproportionately important to the forget set. Second, SSD induces forgetting by dampening these parameters proportional to their relative importance to the forget set with respect to the wider training data. We evaluate our method against several existing unlearning methods in a range of experiments using ResNet18 and Vision Transformer. Results show that the performance of SSD is competitive with retrain-based post hoc methods, demonstrating the viability of retrain-free post hoc unlearning approaches.

  • 3 authors
·
Aug 15, 2023