Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLossless Acceleration for Seq2seq Generation with Aggressive Decoding
We study lossless acceleration for seq2seq generation with a novel decoding algorithm -- Aggressive Decoding. Unlike the previous efforts (e.g., non-autoregressive decoding) speeding up seq2seq generation at the cost of quality loss, our approach aims to yield the identical (or better) generation compared with autoregressive decoding but in a significant speedup, achieved by innovative cooperation of aggressive decoding and verification that are both efficient due to parallel computing. We propose two Aggressive Decoding paradigms for 2 kinds of seq2seq tasks: 1) For the seq2seq tasks whose inputs and outputs are highly similar (e.g., Grammatical Error Correction), we propose Input-guided Aggressive Decoding (IAD) that aggressively copies from the input sentence as drafted decoded tokens to verify in parallel; 2) For other general seq2seq tasks (e.g., Machine Translation), we propose Generalized Aggressive Decoding (GAD) that first employs an additional non-autoregressive decoding model for aggressive decoding and then verifies in parallel in the autoregressive manner. We test Aggressive Decoding on the most popular 6-layer Transformer model on GPU in multiple seq2seq tasks: 1) For IAD, we show that it can introduce a 7x-9x speedup for the Transformer in Grammatical Error Correction and Text Simplification tasks with the identical results as greedy decoding; 2) For GAD, we observe a 3x-5x speedup with the identical or even better quality in two important seq2seq tasks: Machine Translation and Abstractive Summarization. Moreover, Aggressive Decoding can benefit even more from stronger computing devices that are better at parallel computing. Given the lossless quality as well as significant and promising speedup, we believe Aggressive Decoding may potentially evolve into a de facto standard for efficient and lossless seq2seq generation in the near future.
Lossless Acceleration of Large Language Model via Adaptive N-gram Parallel Decoding
While Large Language Models (LLMs) have shown remarkable abilities, they are hindered by significant resource consumption and considerable latency due to autoregressive processing. In this study, we introduce Adaptive N-gram Parallel Decoding (ANPD), an innovative and lossless approach that accelerates inference by allowing the simultaneous generation of multiple tokens. ANPD incorporates a two-stage approach: it begins with a rapid drafting phase that employs an N-gram module, which adapts based on the current interactive context, followed by a verification phase, during which the original LLM assesses and confirms the proposed tokens. Consequently, ANPD preserves the integrity of the LLM's original output while enhancing processing speed. We further leverage a multi-level architecture for the N-gram module to enhance the precision of the initial draft, consequently reducing inference latency. ANPD eliminates the need for retraining or extra GPU memory, making it an efficient and plug-and-play enhancement. In our experiments, models such as LLaMA and its fine-tuned variants have shown speed improvements up to 3.67x, validating the effectiveness of our proposed ANPD.
From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens
Generating ultra-long sequences with large language models (LLMs) has become increasingly crucial but remains a highly time-intensive task, particularly for sequences up to 100K tokens. While traditional speculative decoding methods exist, simply extending their generation limits fails to accelerate the process and can be detrimental. Through an in-depth analysis, we identify three major challenges hindering efficient generation: frequent model reloading, dynamic key-value (KV) management and repetitive generation. To address these issues, we introduce TOKENSWIFT, a novel framework designed to substantially accelerate the generation process of ultra-long sequences while maintaining the target model's inherent quality. Experimental results demonstrate that TOKENSWIFT achieves over 3 times speedup across models of varying scales (1.5B, 7B, 8B, 14B) and architectures (MHA, GQA). This acceleration translates to hours of time savings for ultra-long sequence generation, establishing TOKENSWIFT as a scalable and effective solution at unprecedented lengths. Code can be found at https://github.com/bigai-nlco/TokenSwift.
TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding
With large language models (LLMs) widely deployed in long content generation recently, there has emerged an increasing demand for efficient long-sequence inference support. However, key-value (KV) cache, which is stored to avoid re-computation, has emerged as a critical bottleneck by growing linearly in size with the sequence length. Due to the auto-regressive nature of LLMs, the entire KV cache will be loaded for every generated token, resulting in low utilization of computational cores and high latency. While various compression methods for KV cache have been proposed to alleviate this issue, they suffer from degradation in generation quality. We introduce TriForce, a hierarchical speculative decoding system that is scalable to long sequence generation. This approach leverages the original model weights and dynamic sparse KV cache via retrieval as a draft model, which serves as an intermediate layer in the hierarchy and is further speculated by a smaller model to reduce its drafting latency. TriForce not only facilitates impressive speedups for Llama2-7B-128K, achieving up to 2.31times on an A100 GPU but also showcases scalability in handling even longer contexts. For the offloading setting on two RTX 4090 GPUs, TriForce achieves 0.108s/tokenx2014only half as slow as the auto-regressive baseline on an A100, which attains 7.78times on our optimized offloading system. Additionally, TriForce performs 4.86times than DeepSpeed-Zero-Inference on a single RTX 4090 GPU. TriForce's robustness is highlighted by its consistently outstanding performance across various temperatures. The code is available at https://github.com/Infini-AI-Lab/TriForce.
SampleAttention: Near-Lossless Acceleration of Long Context LLM Inference with Adaptive Structured Sparse Attention
Large language models (LLMs) now support extremely long context windows, but the quadratic complexity of vanilla attention results in significantly long Time-to-First-Token (TTFT) latency. Existing approaches to address this complexity require additional pretraining or finetuning, and often sacrifice model accuracy. In this paper, we first provide both theoretical and empirical foundations for near-lossless sparse attention. We find dynamically capturing head-specific sparse patterns at runtime with low overhead is crucial. To address this, we propose SampleAttention, an adaptive structured and near-lossless sparse attention. Leveraging observed significant sparse patterns, SampleAttention attends to a fixed percentage of adjacent tokens to capture local window patterns, and employs a two-stage query-guided key-value filtering approach, which adaptively select a minimum set of key-values with low overhead, to capture column stripe patterns. Comprehensive evaluations show that SampleAttention can seamlessly replace vanilla attention in off-the-shelf LLMs with nearly no accuracy loss, and reduces TTFT by up to 2.42times compared with FlashAttention.
Inference with Reference: Lossless Acceleration of Large Language Models
We propose LLMA, an LLM accelerator to losslessly speed up Large Language Model (LLM) inference with references. LLMA is motivated by the observation that there are abundant identical text spans between the decoding result by an LLM and the reference that is available in many real world scenarios (e.g., retrieved documents). LLMA first selects a text span from the reference and copies its tokens to the decoder and then efficiently checks the tokens' appropriateness as the decoding result in parallel within one decoding step. The improved computational parallelism allows LLMA to achieve over 2x speed-up for LLMs with identical generation results as greedy decoding in many practical generation scenarios where significant overlap between in-context reference and outputs exists (e.g., search engines and multi-turn conversations).
BiTA: Bi-Directional Tuning for Lossless Acceleration in Large Language Models
Large language models (LLMs) commonly employ autoregressive generation during inference, leading to high memory bandwidth demand and consequently extended latency. To mitigate this inefficiency, we present Bi-directional Tuning for lossless Acceleration (BiTA), an innovative method expediting LLMs via streamlined semi-autoregressive generation and draft verification. Inspired by the concept of prompt tuning, we enhance LLMs with a parameter-efficient design called bi-directional tuning for the capability in semi-autoregressive generation. Employing efficient tree-based decoding, the models perform draft candidate generation and verification in parallel, ensuring outputs identical to their autoregressive counterparts under greedy sampling. BiTA serves as a lightweight plug-in module, seamlessly boosting the inference efficiency of existing LLMs without requiring additional assistance models or incurring significant extra memory costs. Applying the proposed BiTA, LLaMA-2-70B-Chat achieves a 2.7times speedup on the MT-Bench benchmark. Extensive experiments confirm our method surpasses state-of-the-art acceleration techniques.
Sparse-to-Dense: A Free Lunch for Lossless Acceleration of Video Understanding in LLMs
Due to the auto-regressive nature of current video large language models (Video-LLMs), the inference latency increases as the input sequence length grows, posing challenges for the efficient processing of video sequences that are usually very long. We observe that during decoding, the attention scores of most tokens in Video-LLMs tend to be sparse and concentrated, with only certain tokens requiring comprehensive full attention. Based on this insight, we introduce Sparse-to-Dense (StD), a novel decoding strategy that integrates two distinct modules: one leveraging sparse top-K attention and the other employing dense full attention. These modules collaborate to accelerate Video-LLMs without loss. The fast (sparse) model speculatively decodes multiple tokens, while the slow (dense) model verifies them in parallel. StD is a tuning-free, plug-and-play solution that achieves up to a 1.94times walltime speedup in video processing. It maintains model performance while enabling a seamless transition from a standard Video-LLM to a sparse Video-LLM with minimal code modifications.
LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
Let Features Decide Their Own Solvers: Hybrid Feature Caching for Diffusion Transformers
Diffusion Transformers offer state-of-the-art fidelity in image and video synthesis, but their iterative sampling process remains a major bottleneck due to the high cost of transformer forward passes at each timestep. To mitigate this, feature caching has emerged as a training-free acceleration technique that reuses or forecasts hidden representations. However, existing methods often apply a uniform caching strategy across all feature dimensions, ignoring their heterogeneous dynamic behaviors. Therefore, we adopt a new perspective by modeling hidden feature evolution as a mixture of ODEs across dimensions, and introduce HyCa, a Hybrid ODE solver inspired caching framework that applies dimension-wise caching strategies. HyCa achieves near-lossless acceleration across diverse domains and models, including 5.55 times speedup on FLUX, 5.56 times speedup on HunyuanVideo, 6.24 times speedup on Qwen-Image and Qwen-Image-Edit without retraining.
SparseD: Sparse Attention for Diffusion Language Models
While diffusion language models (DLMs) offer a promising alternative to autoregressive models (ARs), existing open-source DLMs suffer from high inference latency. This bottleneck is mainly due to the attention's quadratic complexity with respect to context length in computing all query-key pairs. Intuitively, to reduce this complexity, a natural strategy is to restrict attention to sparse patterns that retain only the most relevant connections. Such approaches are well-established in ARs, where attention follows fixed and clearly defined sparse patterns. However, in DLMs, we observe distinct sparsity behaviors: (1) attention patterns vary across heads, (2) attention patterns in each head remain highly similar across denoising steps, and (3) early denoising steps are critical for generation. These findings render sparse attention methods designed for ARs largely incompatible with DLMs, as they fail to capture head-specific structures and risk degrading generation when applied in early denoising steps. To address these challenges, we propose SparseD, a novel sparse attention method for DLMs. Leveraging the observations, SparseD only requires pre-computing head-specific sparse patterns one time, and reuses them across all steps. This prevents recomputing sparse patterns at each denoising step. Meanwhile, SparseD uses full attention in the early steps, then switches to sparse attention later to maintain generation quality. Together, these establish SparseD as a practical and efficient solution for deploying DLMs in long-context applications. Experimental results demonstrate that SparseD achieves lossless acceleration, delivering up to 1.50times speedup over FlashAttention at a 64k context length with 1,024 denoising steps.
From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99times on FLUX and 5.00times on HunyuanVideo without additional training. On DiT, it achieves 3.41 lower FID compared with previous SOTA at 4.53times acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
Dynamic Speculative Agent Planning
Despite their remarkable success in complex tasks propelling widespread adoption, large language-model-based agents still face critical deployment challenges due to prohibitive latency and inference costs. While recent work has explored various methods to accelerate inference, existing approaches suffer from significant limitations: they either fail to preserve performance fidelity, require extensive offline training of router modules, or incur excessive operational costs. Moreover, they provide minimal user control over the tradeoff between acceleration and other performance metrics. To address these gaps, we introduce Dynamic Speculative Planning (DSP), an asynchronous online reinforcement learning framework that provides lossless acceleration with substantially reduced costs without requiring additional pre-deployment preparation. DSP explicitly optimizes a joint objective balancing end-to-end latency against dollar cost, allowing practitioners to adjust a single parameter that steers the system toward faster responses, cheaper operation, or any point along this continuum. Experiments on two standard agent benchmarks demonstrate that DSP achieves comparable efficiency to the fastest lossless acceleration method while reducing total cost by 30% and unnecessary cost up to 60%. Our code and data are available through https://github.com/guanyilin428/Dynamic-Speculative-Planning.
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism
The recent advancements in large language models (LLMs) have been extraordinary, yet the escalating inference costs associated with them present challenges in real-world applications. To address these challenges, we propose a novel approach called Early-exiting Speculative Decoding (EESD) with lossless acceleration. Specifically, EESD utilizes a segment of the LLM to generate draft tokens, incorporating Early-exiting structures after the first N layers. To enhance the quality of draft tokens, a self-distillation method is integrated. This early-exiting design not only reduces deployment and training costs but also significantly accelerates the token generation speed. Moreover, we introduce a novel sampling mechanism that leverages Thompson Sampling to regulate the generation processes, automatically determining the quantity of draft tokens in each round. The original LLM is then employed to validate these draft tokens through a single forward pass, and thus guarantees that the final output text maintains a distribution consistent with vanilla auto-regressive decoding. The experimental results on both 13B and 70B models demonstrate that our approach decodes tokens at a markedly accelerated rate compared to prior methods, showing the effectiveness of our approach.
dKV-Cache: The Cache for Diffusion Language Models
Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose Smart Parallel Auto-Correct dEcoding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
EAGLE: Speculative Sampling Requires Rethinking Feature Uncertainty
Auto-regressive decoding makes the inference of Large Language Models (LLMs) time-consuming. We propose a simple framework, EAGLE (Extrapolation Algorithm for Greater Language-model Efficiency), for lossless acceleration. Unlike traditional speculative sampling methods, EAGLE operates the drafting process auto-regressively at the more regular (second-top-layer) feature level and addresses the sampling uncertainty issues in the next-feature prediction problems by integrating tokens from one time step ahead. The acceleration provided by EAGLE is lossless: it involves no fine-tuning of the target LLM, and the generated text maintains the same distribution as that of vanilla auto-regressive decoding. As of the submission of this paper, EAGLE is the fastest known framework within the speculative sampling family. On MT-bench, EAGLE is 3x faster than vanilla decoding, 2x faster than Lookahead, and 1.6x faster than Medusa. Using gpt-fast, EAGLE attains on average 160 tokens/s with LLaMA2-Chat 13B on a single RTX 3090 GPU, compared to 24 tokens/s of Huggingface's implementations.
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
InfoBatch: Lossless Training Speed Up by Unbiased Dynamic Data Pruning
Data pruning aims to obtain lossless performances with less overall cost. A common approach is to filter out samples that make less contribution to the training. This could lead to gradient expectation bias compared to the original data. To solve this problem, we propose InfoBatch, a novel framework aiming to achieve lossless training acceleration by unbiased dynamic data pruning. Specifically, InfoBatch randomly prunes a portion of less informative samples based on the loss distribution and rescales the gradients of the remaining samples to approximate the original gradient. As a plug-and-play and architecture-agnostic framework, InfoBatch consistently obtains lossless training results on classification, semantic segmentation, vision pertaining, and instruction fine-tuning tasks. On CIFAR10/100, ImageNet-1K, and ADE20K, InfoBatch losslessly saves 40\% overall cost. For pertaining MAE and diffusion model, InfoBatch can respectively save 24.8\% and 27\% cost. For LLaMA instruction fine-tuning, InfoBatch is also able to save 20\% cost and is compatible with coreset selection methods. The code is publicly available at https://github.com/henryqin1997/InfoBatch{github.com/NUS-HPC-AI-Lab/InfoBatch}.
Medusa: Simple LLM Inference Acceleration Framework with Multiple Decoding Heads
The inference process in Large Language Models (LLMs) is often limited due to the absence of parallelism in the auto-regressive decoding process, resulting in most operations being restricted by the memory bandwidth of accelerators. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa introduces only minimal overhead in terms of single-step latency while substantially reducing the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.
Self Speculative Decoding for Diffusion Large Language Models
Diffusion-based Large Language Models (dLLMs) have emerged as a competitive alternative to autoregressive models, offering unique advantages through bidirectional attention and parallel generation paradigms. However, the generation results of current parallel decoding methods deviate from stepwise decoding, introducing potential performance degradation, which limits their practical deployment. To address this problem, we propose Self Speculative Decoding (SSD), a lossless inference acceleration method that leverages the dLLM itself as both speculative decoding drafter and verifier without auxiliary modules. SSD introduces a self-drafting mechanism where the model generates predictions for multiple positions, then verifies them through hierarchical verification trees in a single forward pass. Unlike traditional speculative decoding that requires separate draft models, SSD eliminates model redundancy and memory overhead by exploiting the dLLM's inherent parallel prediction capability for multiple positions. This self-speculative approach allows the model to progressively verify and accept multiple tokens in a single forward pass. Our experiments demonstrate that SSD achieves up to 3.46times speedup while keeping the output identical to stepwise decoding on open source models such as LLaDA and Dream. Code will be made publicly available on GitHub.
Block-wise Adaptive Caching for Accelerating Diffusion Policy
Diffusion Policy has demonstrated strong visuomotor modeling capabilities, but its high computational cost renders it impractical for real-time robotic control. Despite huge redundancy across repetitive denoising steps, existing diffusion acceleration techniques fail to generalize to Diffusion Policy due to fundamental architectural and data divergences. In this paper, we propose Block-wise Adaptive Caching(BAC), a method to accelerate Diffusion Policy by caching intermediate action features. BAC achieves lossless action generation acceleration by adaptively updating and reusing cached features at the block level, based on a key observation that feature similarities vary non-uniformly across timesteps and locks. To operationalize this insight, we first propose the Adaptive Caching Scheduler, designed to identify optimal update timesteps by maximizing the global feature similarities between cached and skipped features. However, applying this scheduler for each block leads to signiffcant error surges due to the inter-block propagation of caching errors, particularly within Feed-Forward Network (FFN) blocks. To mitigate this issue, we develop the Bubbling Union Algorithm, which truncates these errors by updating the upstream blocks with signiffcant caching errors before downstream FFNs. As a training-free plugin, BAC is readily integrable with existing transformer-based Diffusion Policy and vision-language-action models. Extensive experiments on multiple robotic benchmarks demonstrate that BAC achieves up to 3x inference speedup for free.
Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration
Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely hidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the pseudo hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding
We present a novel inference scheme, self-speculative decoding, for accelerating Large Language Models (LLMs) without the need for an auxiliary model. This approach is characterized by a two-stage process: drafting and verification. The drafting stage generates draft tokens at a slightly lower quality but more quickly, which is achieved by selectively skipping certain intermediate layers during drafting Subsequently, the verification stage employs the original LLM to validate those draft output tokens in one forward pass. This process ensures the final output remains identical to that produced by the unaltered LLM, thereby maintaining output quality. The proposed method requires no additional neural network training and no extra memory footprint, making it a plug-and-play and cost-effective solution for inference acceleration. Benchmarks with LLaMA-2 and its fine-tuned models demonstrated a speedup up to 1.73times.
Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Hyper-Bagel: A Unified Acceleration Framework for Multimodal Understanding and Generation
Unified multimodal models have recently attracted considerable attention for their remarkable abilities in jointly understanding and generating diverse content. However, as contexts integrate increasingly numerous interleaved multimodal tokens, the iterative processes of diffusion denoising and autoregressive decoding impose significant computational overhead. To address this, we propose Hyper-Bagel, a unified acceleration framework designed to simultaneously speed up both multimodal understanding and generation tasks. Our approach uses a divide-and-conquer strategy, employing speculative decoding for next-token prediction and a multi-stage distillation process for diffusion denoising. The framework delivers substantial performance gains, achieving over a 2x speedup in multimodal understanding. For generative tasks, our resulting lossless 6-NFE model yields a 16.67x speedup in text-to-image generation and a 22x speedup in image editing, all while preserving the high-quality output of the original model. We further develop a highly efficient 1-NFE model that enables near real-time interactive editing and generation. By combining advanced adversarial distillation with human feedback learning, this model achieves ultimate cost-effectiveness and responsiveness, making complex multimodal interactions seamless and instantaneous.
Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process.
MC-SJD : Maximal Coupling Speculative Jacobi Decoding for Autoregressive Visual Generation Acceleration
While autoregressive (AR) modeling has recently emerged as a new paradigm in visual generation, its practical adoption is severely constrained by the slow inference speed of per-token generation, which often requires thousands of steps to produce a single sample. To address this challenge, we propose MC-SJD, a training-free, lossless parallel decoding framework designed to accelerate AR visual generation by extending the recently introduced Speculative Jacobi Decoding (SJD). Although SJD shows strong potential for accelerating AR generation, we demonstrate that token instability across iterations significantly reduces the acceptance rate, a limitation that primarily arises from the independent sampling process used during draft token generation. To overcome this, we introduce MC-SJD, an information-theoretic approach based on coupling, which substantially accelerates standard SJD by maximizing the probability of sampling identical draft tokens across consecutive iterations, all while preserving its lossless property. Remarkably, this method requires only a single-line modification to the existing algorithm, yet achieves substantial performance gains, delivering up to a ~4.2x acceleration in image generation and ~13.3x acceleration in video generation compared to standard AR decoding, without any degradation in output quality.
EasySpec: Layer-Parallel Speculative Decoding for Efficient Multi-GPU Utilization
Speculative decoding is an effective and lossless method for Large Language Model (LLM) inference acceleration. It employs a smaller model to generate a draft token sequence, which is then verified by the original base model. In multi-GPU systems, inference latency can be further reduced through tensor parallelism (TP), while the optimal TP size of the draft model is typically smaller than that of the base model, leading to GPU idling during the drafting stage. To solve this problem, we propose EasySpec, a layer-parallel speculation strategy that optimizes the efficiency of multi-GPU utilization.EasySpec breaks the sequential execution order of layers in the drafting model, enabling multi-layer parallelization across devices, albeit with some induced approximation errors. After each drafting-and-verification iteration, the draft model's key-value (KV) cache is calibrated in a single forward pass, preventing long-term error accumulation at minimal additional latency. We evaluated EasySpec on several mainstream open-source LLMs, using smaller versions of models from the same series as drafters. The results demonstrate that EasySpec can achieve a peak speedup of 4.17x compared to vanilla decoding, while preserving the original distribution of the base LLMs. Specifically, the drafting stage can be accelerated by up to 1.62x with a maximum accuracy drop of only 7%, requiring no training or fine-tuning on the draft models.
SpecVLM: Fast Speculative Decoding in Vision-Language Models
Speculative decoding is a powerful way to accelerate autoregressive large language models (LLMs), but directly porting it to vision-language models (VLMs) faces unique systems constraints: the prefill stage is dominated by visual tokens whose count scales with image resolution and video length, inflating both compute and memory, especially the key-value (KV) cache. We study speculative decoding for VLMs and introduce SpecVLM, a practical system that (1) establishes a strong EAGLE-2-style baseline, EagleVLM, delivering 1.5--2.3x end-to-end speedups over full autoregressive inference, and (2) further accelerates VLM inference with an elastic visual compressor that adaptively selects among pruning, pooling, convolution, and resampler primitives to balance FLOPs/parameters and accuracy per input. To avoid costly offline distillation corpora, we propose an online-logit distillation protocol that trains the draft model with on-the-fly teacher logits and penultimate features using a combined cross-entropy and Smooth L1 objective, eliminating storage and preprocessing while remaining compute-efficient. This protocol reveals a training-time scaling effect: longer online training monotonically increases the draft model's average accepted length, improving speculative efficiency. Empirically, SpecVLM achieves additional acceleration, culminating in 2.5--2.9x end-to-end speedups within 5 epochs across LLaVA and MMMU, consistently over resolutions and task difficulties, while preserving the target model's output distribution (lossless decoding). Our code is available at https://github.com/haiduo/SpecVLM.
Amphista: Accelerate LLM Inference with Bi-directional Multiple Drafting Heads in a Non-autoregressive Style
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speeds, especially when hardware parallel accelerators and memory bandwidth are not fully utilized. In this work, we propose Amphista, a speculative decoding algorithm that adheres to a non-autoregressive decoding paradigm. Owing to the increased parallelism, our method demonstrates higher efficiency in inference compared to autoregressive methods. Specifically, Amphista models an Auto-embedding Block capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista implements Staged Adaptation Layers to facilitate the transition of semantic information from the base model's autoregressive inference to the drafting heads' non-autoregressive speculation, thereby achieving paradigm transformation and feature fusion. We conduct a series of experiments on a suite of Vicuna models using MT-Bench and Spec-Bench. For the Vicuna 33B model, Amphista achieves up to 2.75times and 1.40times wall-clock acceleration compared to vanilla autoregressive decoding and Medusa, respectively, while preserving lossless generation quality.
Draft-based Approximate Inference for LLMs
Optimizing inference for long-context Large Language Models (LLMs) is increasingly important due to the quadratic compute and linear memory complexity of Transformers. Existing approximation methods, such as key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on rough predictions of token or KV pair importance. We propose a novel framework for approximate LLM inference that leverages small draft models to more accurately predict the importance of tokens and KV pairs. Specifically, we introduce two instantiations of our proposed framework: (i) SpecKV, which leverages a draft output to accurately assess the importance of each KV pair for more effective KV cache dropping, and (ii) SpecPC, which uses the draft model's attention activations to identify and discard unimportant prompt tokens. To the best of our knowledge, this is the first work to use draft models for approximate LLM inference acceleration, extending their utility beyond traditional lossless speculative decoding. We motivate our methods with theoretical and empirical analyses, and show a strong correlation between the attention patterns of draft and target models. Extensive experiments on long-context benchmarks show that our methods consistently achieve higher accuracy than existing baselines, while preserving the same improvements in memory usage, latency, and throughput. Our code is available at https://github.com/furiosa-ai/draft-based-approx-llm.
