Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMachine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens
Vision-language models (VLMs) excel at multimodal understanding, yet their text-only decoding forces them to verbalize visual reasoning, limiting performance on tasks that demand visual imagination. Recent attempts train VLMs to render explicit images, but the heavy image-generation pre-training often hinders the reasoning ability. Inspired by the way humans reason with mental imagery-the internal construction and manipulation of visual cues-we investigate whether VLMs can reason through interleaved multimodal trajectories without producing explicit images. To this end, we present a Machine Mental Imagery framework, dubbed as Mirage, which augments VLM decoding with latent visual tokens alongside ordinary text. Concretely, whenever the model chooses to ``think visually'', it recasts its hidden states as next tokens, thereby continuing a multimodal trajectory without generating pixel-level images. Begin by supervising the latent tokens through distillation from ground-truth image embeddings, we then switch to text-only supervision to make the latent trajectory align tightly with the task objective. A subsequent reinforcement learning stage further enhances the multimodal reasoning capability. Experiments on diverse benchmarks demonstrate that Mirage unlocks stronger multimodal reasoning without explicit image generation.
Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning
Large Language Models (LLMs) excel at reasoning and planning when trained on chainof-thought (CoT) data, where the step-by-step thought process is explicitly outlined by text tokens. However, this results in lengthy inputs where many words support textual coherence rather than core reasoning information, and processing these inputs consumes substantial computation resources. In this work, we propose a hybrid representation of the reasoning process, where we partially abstract away the initial reasoning steps using latent discrete tokens generated by VQ-VAE, significantly reducing the length of reasoning traces. We explore the use of latent trace abstractions in two scenarios: 1) training the model from scratch for the Keys-Finding Maze problem, 2) fine-tuning LLMs on this hybrid data with an extended vocabulary including unseen latent tokens, for both logical and mathematical reasoning problems. To facilitate effective learning, we introduce a simple training procedure that randomly mixes latent and text tokens, which enables fast adaptation to new latent tokens. Our approach consistently outperforms the baselines methods in various benchmarks.
SparseFormer: Sparse Visual Recognition via Limited Latent Tokens
Human visual recognition is a sparse process, where only a few salient visual cues are attended to rather than traversing every detail uniformly. However, most current vision networks follow a dense paradigm, processing every single visual unit (e.g,, pixel or patch) in a uniform manner. In this paper, we challenge this dense paradigm and present a new method, coined SparseFormer, to imitate human's sparse visual recognition in an end-to-end manner. SparseFormer learns to represent images using a highly limited number of tokens (down to 49) in the latent space with sparse feature sampling procedure instead of processing dense units in the original pixel space. Therefore, SparseFormer circumvents most of dense operations on the image space and has much lower computational costs. Experiments on the ImageNet classification benchmark dataset show that SparseFormer achieves performance on par with canonical or well-established models while offering better accuracy-throughput tradeoff. Moreover, the design of our network can be easily extended to the video classification with promising performance at lower computational costs. We hope that our work can provide an alternative way for visual modeling and inspire further research on sparse neural architectures. The code will be publicly available at https://github.com/showlab/sparseformer
Latent Reasoning in LLMs as a Vocabulary-Space Superposition
Large language models (LLMs) demonstrate strong reasoning abilities with chain-of-thought prompting, but explicit reasoning introduces substantial computational overhead. Recent work on latent reasoning reduces this cost by reasoning in latent space without explicit supervision, but performance drops significantly. Our preliminary experiments suggest that this degradation stems from the unstructured latent space, which makes fitting latent tokens difficult. To address this, we restrict the latent space to the column space of the LLM vocabulary, treating latent reasoning as a superposition over vocabulary probabilities. Once latent reasoning concludes, it collapses into an eigenstate of explicit reasoning to yield the final answer. Based on this idea, we propose Latent-SFT, a two-stage learning framework. In the first stage, we design two specialized attention masks to guide the Latent Token Encoder in generating latent tokens, allowing the LLM to produce the correct answer conditioned on them. In the second stage, the Latent Token Encoder is discarded, and the LLM is directly trained to generate these latent tokens autonomously for latent reasoning, optimized with KL and CE losses. Latent-SFT sets a new state of the art on GSM8k, matching explicit SFT performance while cutting reasoning chains by up to 4 times and outperforming prior latent methods. On Math500 and AIME24, lexical probability-based latent reasoning also clearly surpasses hidden-state-based approaches. Our metrics of effective compression rate and effective global parallelism further show that latent reasoning is both the compression of a single path and the superposition of multiple paths.
KaVa: Latent Reasoning via Compressed KV-Cache Distillation
Large Language Models (LLMs) excel at multi-step reasoning problems with explicit chain-of-thought (CoT), but verbose traces incur significant computational costs and memory overhead, and often carry redundant, stylistic artifacts. Latent reasoning has emerged as an efficient alternative that internalizes the thought process, but it suffers from a critical lack of supervision, limiting its effectiveness on complex, natural-language reasoning traces. In this work, we propose KaVa, the first framework that bridges this gap by distilling knowledge directly from a compressed KV-cache of the teacher into a latent-reasoning student via self-distillation, leveraging the representational flexibility of continuous latent tokens to align stepwise KV trajectories. We show that the abstract, unstructured knowledge within compressed KV-cache, which lacks direct token correspondence, can serve as a rich supervisory signal for a latent reasoning student. Empirically, the approach consistently outperforms strong latent baselines, exhibits markedly smaller degradation from equation-only to natural-language traces, and scales to larger backbones while preserving efficiency. These results establish compressed KV-cache distillation as a scalable supervision signal for latent reasoning, combining the accuracy of CoT-trained teachers with the efficiency and deployability of latent inference.
Qihoo-T2X: An Efficiency-Focused Diffusion Transformer via Proxy Tokens for Text-to-Any-Task
The global self-attention mechanism in diffusion transformers involves redundant computation due to the sparse and redundant nature of visual information, and the attention map of tokens within a spatial window shows significant similarity. To address this redundancy, we propose the Proxy Token Diffusion Transformer (PT-DiT), which employs sparse representative token attention (where the number of representative tokens is much smaller than the total number of tokens) to model global visual information efficiently. Specifically, in each transformer block, we randomly sample one token from each spatial-temporal window to serve as a proxy token for that region. The global semantics are captured through the self-attention of these proxy tokens and then injected into all latent tokens via cross-attention. Simultaneously, we introduce window and shift window attention to address the limitations in detail modeling caused by the sparse attention mechanism. Building on the well-designed PT-DiT, we further develop the Qihoo-T2X family, which includes a variety of models for T2I, T2V, and T2MV tasks. Experimental results show that PT-DiT achieves competitive performance while reducing the computational complexity in both image and video generation tasks (e.g., a 48% reduction compared to DiT and a 35% reduction compared to Pixart-alpha). Our source code is available at https://github.com/360CVGroup/Qihoo-T2X.
PartCrafter: Structured 3D Mesh Generation via Compositional Latent Diffusion Transformers
We introduce PartCrafter, the first structured 3D generative model that jointly synthesizes multiple semantically meaningful and geometrically distinct 3D meshes from a single RGB image. Unlike existing methods that either produce monolithic 3D shapes or follow two-stage pipelines, i.e., first segmenting an image and then reconstructing each segment, PartCrafter adopts a unified, compositional generation architecture that does not rely on pre-segmented inputs. Conditioned on a single image, it simultaneously denoises multiple 3D parts, enabling end-to-end part-aware generation of both individual objects and complex multi-object scenes. PartCrafter builds upon a pretrained 3D mesh diffusion transformer (DiT) trained on whole objects, inheriting the pretrained weights, encoder, and decoder, and introduces two key innovations: (1) A compositional latent space, where each 3D part is represented by a set of disentangled latent tokens; (2) A hierarchical attention mechanism that enables structured information flow both within individual parts and across all parts, ensuring global coherence while preserving part-level detail during generation. To support part-level supervision, we curate a new dataset by mining part-level annotations from large-scale 3D object datasets. Experiments show that PartCrafter outperforms existing approaches in generating decomposable 3D meshes, including parts that are not directly visible in input images, demonstrating the strength of part-aware generative priors for 3D understanding and synthesis. Code and training data will be released.
LaVieID: Local Autoregressive Diffusion Transformers for Identity-Preserving Video Creation
In this paper, we present LaVieID, a novel local autoregressive video diffusion framework designed to tackle the challenging identity-preserving text-to-video task. The key idea of LaVieID is to mitigate the loss of identity information inherent in the stochastic global generation process of diffusion transformers (DiTs) from both spatial and temporal perspectives. Specifically, unlike the global and unstructured modeling of facial latent states in existing DiTs, LaVieID introduces a local router to explicitly represent latent states by weighted combinations of fine-grained local facial structures. This alleviates undesirable feature interference and encourages DiTs to capture distinctive facial characteristics. Furthermore, a temporal autoregressive module is integrated into LaVieID to refine denoised latent tokens before video decoding. This module divides latent tokens temporally into chunks, exploiting their long-range temporal dependencies to predict biases for rectifying tokens, thereby significantly enhancing inter-frame identity consistency. Consequently, LaVieID can generate high-fidelity personalized videos and achieve state-of-the-art performance. Our code and models are available at https://github.com/ssugarwh/LaVieID.
VidTok: A Versatile and Open-Source Video Tokenizer
Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.
Scalable Adaptive Computation for Iterative Generation
Natural data is redundant yet predominant architectures tile computation uniformly across their input and output space. We propose the Recurrent Interface Networks (RINs), an attention-based architecture that decouples its core computation from the dimensionality of the data, enabling adaptive computation for more scalable generation of high-dimensional data. RINs focus the bulk of computation (i.e. global self-attention) on a set of latent tokens, using cross-attention to read and write (i.e. route) information between latent and data tokens. Stacking RIN blocks allows bottom-up (data to latent) and top-down (latent to data) feedback, leading to deeper and more expressive routing. While this routing introduces challenges, this is less problematic in recurrent computation settings where the task (and routing problem) changes gradually, such as iterative generation with diffusion models. We show how to leverage recurrence by conditioning the latent tokens at each forward pass of the reverse diffusion process with those from prior computation, i.e. latent self-conditioning. RINs yield state-of-the-art pixel diffusion models for image and video generation, scaling to 1024X1024 images without cascades or guidance, while being domain-agnostic and up to 10X more efficient than 2D and 3D U-Nets.
Adaptive Length Image Tokenization via Recurrent Allocation
Current vision systems typically assign fixed-length representations to images, regardless of the information content. This contrasts with human intelligence - and even large language models - which allocate varying representational capacities based on entropy, context and familiarity. Inspired by this, we propose an approach to learn variable-length token representations for 2D images. Our encoder-decoder architecture recursively processes 2D image tokens, distilling them into 1D latent tokens over multiple iterations of recurrent rollouts. Each iteration refines the 2D tokens, updates the existing 1D latent tokens, and adaptively increases representational capacity by adding new tokens. This enables compression of images into a variable number of tokens, ranging from 32 to 256. We validate our tokenizer using reconstruction loss and FID metrics, demonstrating that token count aligns with image entropy, familiarity and downstream task requirements. Recurrent token processing with increasing representational capacity in each iteration shows signs of token specialization, revealing potential for object / part discovery.
Yo'LLaVA: Your Personalized Language and Vision Assistant
Large Multimodal Models (LMMs) have shown remarkable capabilities across a variety of tasks (e.g., image captioning, visual question answering). While broad, their knowledge remains generic (e.g., recognizing a dog), and they are unable to handle personalized subjects (e.g., recognizing a user's pet dog). Human reasoning, in contrast, typically operates within the context of specific subjects in our surroundings. For example, one might ask, "What should I buy for my dog's birthday?"; as opposed to a generic inquiry about "What should I buy for a dog's birthday?". Similarly, when looking at a friend's image, the interest lies in seeing their activities (e.g., "my friend is holding a cat"), rather than merely observing generic human actions (e.g., "a man is holding a cat"). In this paper, we introduce the novel task of personalizing LMMs, so that they can have conversations about a specific subject. We propose Yo'LLaVA, which learns to embed a personalized subject into a set of latent tokens given a handful of example images of the subject. Our qualitative and quantitative analyses reveal that Yo'LLaVA can learn the concept more efficiently using fewer tokens and more effectively encode the visual attributes compared to strong prompting baselines (e.g., LLaVA).
QDepth-VLA: Quantized Depth Prediction as Auxiliary Supervision for Vision-Language-Action Models
Spatial perception and reasoning are crucial for Vision-Language-Action (VLA) models to accomplish fine-grained manipulation tasks. However, existing approaches often lack the ability to understand and reason over the essential 3D structures necessary for precise control. To address this limitation, we propose QDepth-VLA, a general framework that augments VLA models with an auxiliary depth prediction task. A dedicated depth expert is designed to predict quantized latent tokens of depth maps obtained from a VQ-VAE encoder, enabling the model to learn depth-aware representations that capture critical geometric cues. Experimental results on the simulation benchmarks and real-world tasks demonstrate that QDepth-VLA yields strong spatial reasoning and competitive performance on manipulation tasks.
X-UniMotion: Animating Human Images with Expressive, Unified and Identity-Agnostic Motion Latents
We present X-UniMotion, a unified and expressive implicit latent representation for whole-body human motion, encompassing facial expressions, body poses, and hand gestures. Unlike prior motion transfer methods that rely on explicit skeletal poses and heuristic cross-identity adjustments, our approach encodes multi-granular motion directly from a single image into a compact set of four disentangled latent tokens -- one for facial expression, one for body pose, and one for each hand. These motion latents are both highly expressive and identity-agnostic, enabling high-fidelity, detailed cross-identity motion transfer across subjects with diverse identities, poses, and spatial configurations. To achieve this, we introduce a self-supervised, end-to-end framework that jointly learns the motion encoder and latent representation alongside a DiT-based video generative model, trained on large-scale, diverse human motion datasets. Motion-identity disentanglement is enforced via 2D spatial and color augmentations, as well as synthetic 3D renderings of cross-identity subject pairs under shared poses. Furthermore, we guide motion token learning with auxiliary decoders that promote fine-grained, semantically aligned, and depth-aware motion embeddings. Extensive experiments show that X-UniMotion outperforms state-of-the-art methods, producing highly expressive animations with superior motion fidelity and identity preservation.
Context Cascade Compression: Exploring the Upper Limits of Text Compression
Million-level token inputs in long-context tasks pose significant computational and memory challenges for Large Language Models (LLMs). Recently, DeepSeek-OCR conducted research into the feasibility of Contexts Optical Compression and achieved preliminary results. Inspired by this, we introduce Context Cascade Compression C3 to explore the upper limits of text compression. Our method cascades two LLMs of different sizes to handle the compression and decoding tasks. Specifically, a small LLM, acting as the first stage, performs text compression by condensing a long context into a set of latent tokens (e.g., 32 or 64 in length), achieving a high ratio of text tokens to latent tokens. A large LLM, as the second stage, then executes the decoding task on this compressed context. Experiments show that at a 20x compression ratio (where the number of text tokens is 20 times the number of latent tokens), our model achieves 98% decoding accuracy, compared to approximately 60% for DeepSeek-OCR. When we further increase the compression ratio to 40x, the accuracy is maintained at around 93%. This indicates that in the domain of context compression, C3 Compression demonstrates superior performance and feasibility over optical character compression. C3 uses a simpler, pure-text pipeline that ignores factors like layout, color, and information loss from a visual encoder. This also suggests a potential upper bound for compression ratios in future work on optical character compression, OCR, and related fields. Codes and model weights are publicly accessible at https://github.com/liufanfanlff/C3-Context-Cascade-Compression
FIT: Far-reaching Interleaved Transformers
We present FIT: a transformer-based architecture with efficient self-attention and adaptive computation. Unlike original transformers, which operate on a single sequence of data tokens, we divide the data tokens into groups, with each group being a shorter sequence of tokens. We employ two types of transformer layers: local layers operate on data tokens within each group, while global layers operate on a smaller set of introduced latent tokens. These layers, comprising the same set of self-attention and feed-forward layers as standard transformers, are interleaved, and cross-attention is used to facilitate information exchange between data and latent tokens within the same group. The attention complexity is O(n^2) locally within each group of size n, but can reach O(L^{{4}/{3}}) globally for sequence length of L. The efficiency can be further enhanced by relying more on global layers that perform adaptive computation using a smaller set of latent tokens. FIT is a versatile architecture and can function as an encoder, diffusion decoder, or autoregressive decoder. We provide initial evidence demonstrating its effectiveness in high-resolution image understanding and generation tasks. Notably, FIT exhibits potential in performing end-to-end training on gigabit-scale data, such as 6400times6400 images, or 160K tokens (after patch tokenization), within a memory capacity of 16GB, without requiring specific optimizations or model parallelism.
GigaTok: Scaling Visual Tokenizers to 3 Billion Parameters for Autoregressive Image Generation
In autoregressive (AR) image generation, visual tokenizers compress images into compact discrete latent tokens, enabling efficient training of downstream autoregressive models for visual generation via next-token prediction. While scaling visual tokenizers improves image reconstruction quality, it often degrades downstream generation quality -- a challenge not adequately addressed in existing literature. To address this, we introduce GigaTok, the first approach to simultaneously improve image reconstruction, generation, and representation learning when scaling visual tokenizers. We identify the growing complexity of latent space as the key factor behind the reconstruction vs. generation dilemma. To mitigate this, we propose semantic regularization, which aligns tokenizer features with semantically consistent features from a pre-trained visual encoder. This constraint prevents excessive latent space complexity during scaling, yielding consistent improvements in both reconstruction and downstream autoregressive generation. Building on semantic regularization, we explore three key practices for scaling tokenizers:(1) using 1D tokenizers for better scalability, (2) prioritizing decoder scaling when expanding both encoder and decoder, and (3) employing entropy loss to stabilize training for billion-scale tokenizers. By scaling to 3 space billion parameters, GigaTok achieves state-of-the-art performance in reconstruction, downstream AR generation, and downstream AR representation quality.
LayerTracer: Cognitive-Aligned Layered SVG Synthesis via Diffusion Transformer
Generating cognitive-aligned layered SVGs remains challenging due to existing methods' tendencies toward either oversimplified single-layer outputs or optimization-induced shape redundancies. We propose LayerTracer, a diffusion transformer based framework that bridges this gap by learning designers' layered SVG creation processes from a novel dataset of sequential design operations. Our approach operates in two phases: First, a text-conditioned DiT generates multi-phase rasterized construction blueprints that simulate human design workflows. Second, layer-wise vectorization with path deduplication produces clean, editable SVGs. For image vectorization, we introduce a conditional diffusion mechanism that encodes reference images into latent tokens, guiding hierarchical reconstruction while preserving structural integrity. Extensive experiments demonstrate LayerTracer's superior performance against optimization-based and neural baselines in both generation quality and editability, effectively aligning AI-generated vectors with professional design cognition.
Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce Hita, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving 2.59 FID and 281.9 IS on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at https://github.com/CVMI-Lab/Hita{https://github.com/CVMI-Lab/Hita}
3D representation in 512-Byte:Variational tokenizer is the key for autoregressive 3D generation
Autoregressive transformers have revolutionized high-fidelity image generation. One crucial ingredient lies in the tokenizer, which compresses high-resolution image patches into manageable discrete tokens with a scanning or hierarchical order suitable for large language models. Extending these tokenizers to 3D generation, however, presents a significant challenge: unlike image patches that naturally exhibit spatial sequence and multi-scale relationships, 3D data lacks an inherent order, making it difficult to compress into fewer tokens while preserving structural details. To address this, we introduce the Variational Tokenizer (VAT), which transforms unordered 3D data into compact latent tokens with an implicit hierarchy, suited for efficient and high-fidelity coarse-to-fine autoregressive modeling. VAT begins with an in-context transformer, which compress numerous unordered 3D features into a reduced token set with minimal information loss. This latent space is then mapped to a Gaussian distribution for residual quantization, with token counts progressively increasing across scales. In this way, tokens at different scales naturally establish the interconnections by allocating themselves into different subspaces within the same Gaussian distribution, facilitating discrete modeling of token relationships across scales. During the decoding phase, a high-resolution triplane is utilized to convert these compact latent tokens into detailed 3D shapes. Extensive experiments demonstrate that VAT enables scalable and efficient 3D generation, outperforming existing methods in quality, efficiency, and generalization. Remarkably, VAT achieves up to a 250x compression, reducing a 1MB mesh to just 3.9KB with a 96% F-score, and can further compress to 256 int8 tokens, achieving a 2000x reduction while maintaining a 92% F-score.
R-Capsule: Compressing High-Level Plans for Efficient Large Language Model Reasoning
Chain-of-Thought (CoT) prompting helps Large Language Models (LLMs) tackle complex reasoning by eliciting explicit step-by-step rationales. However, CoT's verbosity increases latency and memory usage and may propagate early errors across long chains. We propose the Reasoning Capsule (R-Capsule), a framework that aims to combine the efficiency of latent reasoning with the transparency of explicit CoT. The core idea is to compress the high-level plan into a small set of learned latent tokens (a Reasoning Capsule) while keeping execution steps lightweight or explicit. This hybrid approach is inspired by the Information Bottleneck (IB) principle, where we encourage the capsule to be approximately minimal yet sufficient for the task. Minimality is encouraged via a low-capacity bottleneck, which helps improve efficiency. Sufficiency is encouraged via a dual objective: a primary task loss for answer accuracy and an auxiliary plan-reconstruction loss that encourages the capsule to faithfully represent the original textual plan. The reconstruction objective helps ground the latent space, thereby improving interpretability and reducing the use of uninformative shortcuts. Our framework strikes a balance between efficiency, accuracy, and interpretability, thereby reducing the visible token footprint of reasoning while maintaining or improving accuracy on complex benchmarks. Our codes are available at: https://anonymous.4open.science/r/Reasoning-Capsule-7BE0
ENAT: Rethinking Spatial-temporal Interactions in Token-based Image Synthesis
Recently, token-based generation have demonstrated their effectiveness in image synthesis. As a representative example, non-autoregressive Transformers (NATs) can generate decent-quality images in a few steps. NATs perform generation in a progressive manner, where the latent tokens of a resulting image are incrementally revealed. At each step, the unrevealed image regions are padded with mask tokens and inferred by NAT. In this paper, we delve into the mechanisms behind the effectiveness of NATs and uncover two important patterns that naturally emerge from NATs: Spatially (within a step), although mask and visible tokens are processed uniformly by NATs, the interactions between them are highly asymmetric. In specific, mask tokens mainly gather information for decoding, while visible tokens tend to primarily provide information, and their deep representations can be built only upon themselves. Temporally (across steps), the interactions between adjacent generation steps mostly concentrate on updating the representations of a few critical tokens, while the computation for the majority of tokens is generally repetitive. Driven by these findings, we propose EfficientNAT (ENAT), a NAT model that explicitly encourages these critical interactions inherent in NATs. At the spatial level, we disentangle the computations of visible and mask tokens by encoding visible tokens independently, while decoding mask tokens conditioned on the fully encoded visible tokens. At the temporal level, we prioritize the computation of the critical tokens at each step, while maximally reusing previously computed token representations to supplement necessary information. ENAT improves the performance of NATs notably with significantly reduced computational cost. Experiments on ImageNet-256, ImageNet-512 and MS-COCO validate the effectiveness of ENAT. Code is available at https://github.com/LeapLabTHU/ENAT.
ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation
Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.
Tree Cross Attention
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of O(N) tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens L < N on which cross attention is then applied, resulting in only O(L) complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) - a module based on Cross Attention that only retrieves information from a logarithmic O(log(N)) number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
LVSM: A Large View Synthesis Model with Minimal 3D Inductive Bias
We propose the Large View Synthesis Model (LVSM), a novel transformer-based approach for scalable and generalizable novel view synthesis from sparse-view inputs. We introduce two architectures: (1) an encoder-decoder LVSM, which encodes input image tokens into a fixed number of 1D latent tokens, functioning as a fully learned scene representation, and decodes novel-view images from them; and (2) a decoder-only LVSM, which directly maps input images to novel-view outputs, completely eliminating intermediate scene representations. Both models bypass the 3D inductive biases used in previous methods -- from 3D representations (e.g., NeRF, 3DGS) to network designs (e.g., epipolar projections, plane sweeps) -- addressing novel view synthesis with a fully data-driven approach. While the encoder-decoder model offers faster inference due to its independent latent representation, the decoder-only LVSM achieves superior quality, scalability, and zero-shot generalization, outperforming previous state-of-the-art methods by 1.5 to 3.5 dB PSNR. Comprehensive evaluations across multiple datasets demonstrate that both LVSM variants achieve state-of-the-art novel view synthesis quality. Notably, our models surpass all previous methods even with reduced computational resources (1-2 GPUs). Please see our website for more details: https://haian-jin.github.io/projects/LVSM/ .
MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
RELIC: Interactive Video World Model with Long-Horizon Memory
A truly interactive world model requires three key ingredients: real-time long-horizon streaming, consistent spatial memory, and precise user control. However, most existing approaches address only one of these aspects in isolation, as achieving all three simultaneously is highly challenging-for example, long-term memory mechanisms often degrade real-time performance. In this work, we present RELIC, a unified framework that tackles these three challenges altogether. Given a single image and a text description, RELIC enables memory-aware, long-duration exploration of arbitrary scenes in real time. Built upon recent autoregressive video-diffusion distillation techniques, our model represents long-horizon memory using highly compressed historical latent tokens encoded with both relative actions and absolute camera poses within the KV cache. This compact, camera-aware memory structure supports implicit 3D-consistent content retrieval and enforces long-term coherence with minimal computational overhead. In parallel, we fine-tune a bidirectional teacher video model to generate sequences beyond its original 5-second training horizon, and transform it into a causal student generator using a new memory-efficient self-forcing paradigm that enables full-context distillation over long-duration teacher as well as long student self-rollouts. Implemented as a 14B-parameter model and trained on a curated Unreal Engine-rendered dataset, RELIC achieves real-time generation at 16 FPS while demonstrating more accurate action following, more stable long-horizon streaming, and more robust spatial-memory retrieval compared with prior work. These capabilities establish RELIC as a strong foundation for the next generation of interactive world modeling.
Language-Guided Image Tokenization for Generation
Image tokenization, the process of transforming raw image pixels into a compact low-dimensional latent representation, has proven crucial for scalable and efficient image generation. However, mainstream image tokenization methods generally have limited compression rates, making high-resolution image generation computationally expensive. To address this challenge, we propose to leverage language for efficient image tokenization, and we call our method Text-Conditioned Image Tokenization (TexTok). TexTok is a simple yet effective tokenization framework that leverages language to provide high-level semantics. By conditioning the tokenization process on descriptive text captions, TexTok allows the tokenization process to focus on encoding fine-grained visual details into latent tokens, leading to enhanced reconstruction quality and higher compression rates. Compared to the conventional tokenizer without text conditioning, TexTok achieves average reconstruction FID improvements of 29.2% and 48.1% on ImageNet-256 and -512 benchmarks respectively, across varying numbers of tokens. These tokenization improvements consistently translate to 16.3% and 34.3% average improvements in generation FID. By simply replacing the tokenizer in Diffusion Transformer (DiT) with TexTok, our system can achieve a 93.5x inference speedup while still outperforming the original DiT using only 32 tokens on ImageNet-512. TexTok with a vanilla DiT generator achieves state-of-the-art FID scores of 1.46 and 1.62 on ImageNet-256 and -512 respectively. Furthermore, we demonstrate TexTok's superiority on the text-to-image generation task, effectively utilizing the off-the-shelf text captions in tokenization.
X-Actor: Emotional and Expressive Long-Range Portrait Acting from Audio
We present X-Actor, a novel audio-driven portrait animation framework that generates lifelike, emotionally expressive talking head videos from a single reference image and an input audio clip. Unlike prior methods that emphasize lip synchronization and short-range visual fidelity in constrained speaking scenarios, X-Actor enables actor-quality, long-form portrait performance capturing nuanced, dynamically evolving emotions that flow coherently with the rhythm and content of speech. Central to our approach is a two-stage decoupled generation pipeline: an audio-conditioned autoregressive diffusion model that predicts expressive yet identity-agnostic facial motion latent tokens within a long temporal context window, followed by a diffusion-based video synthesis module that translates these motions into high-fidelity video animations. By operating in a compact facial motion latent space decoupled from visual and identity cues, our autoregressive diffusion model effectively captures long-range correlations between audio and facial dynamics through a diffusion-forcing training paradigm, enabling infinite-length emotionally-rich motion prediction without error accumulation. Extensive experiments demonstrate that X-Actor produces compelling, cinematic-style performances that go beyond standard talking head animations and achieves state-of-the-art results in long-range, audio-driven emotional portrait acting.
Moving Off-the-Grid: Scene-Grounded Video Representations
Current vision models typically maintain a fixed correspondence between their representation structure and image space. Each layer comprises a set of tokens arranged "on-the-grid," which biases patches or tokens to encode information at a specific spatio(-temporal) location. In this work we present Moving Off-the-Grid (MooG), a self-supervised video representation model that offers an alternative approach, allowing tokens to move "off-the-grid" to better enable them to represent scene elements consistently, even as they move across the image plane through time. By using a combination of cross-attention and positional embeddings we disentangle the representation structure and image structure. We find that a simple self-supervised objective--next frame prediction--trained on video data, results in a set of latent tokens which bind to specific scene structures and track them as they move. We demonstrate the usefulness of MooG's learned representation both qualitatively and quantitatively by training readouts on top of the learned representation on a variety of downstream tasks. We show that MooG can provide a strong foundation for different vision tasks when compared to "on-the-grid" baselines.
AToken: A Unified Tokenizer for Vision
We present AToken, the first unified visual tokenizer that achieves both high-fidelity reconstruction and semantic understanding across images, videos, and 3D assets. Unlike existing tokenizers that specialize in either reconstruction or understanding for single modalities, AToken encodes these diverse visual inputs into a shared 4D latent space, unifying both tasks and modalities in a single framework. Specifically, we introduce a pure transformer architecture with 4D rotary position embeddings to process visual inputs of arbitrary resolutions and temporal durations. To ensure stable training, we introduce an adversarial-free training objective that combines perceptual and Gram matrix losses, achieving state-of-the-art reconstruction quality. By employing a progressive training curriculum, AToken gradually expands from single images, videos, and 3D, and supports both continuous and discrete latent tokens. AToken achieves 0.21 rFID with 82.2% ImageNet accuracy for images, 3.01 rFVD with 32.6% MSRVTT retrieval for videos, and 28.19 PSNR with 90.9% classification accuracy for 3D. In downstream applications, AToken enables both visual generation tasks (e.g., image generation with continuous and discrete tokens, text-to-video generation, image-to-3D synthesis) and understanding tasks (e.g., multimodal LLMs), achieving competitive performance across all benchmarks. These results shed light on the next-generation multimodal AI systems built upon unified visual tokenization.
SANA: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformers
We introduce Sana, a text-to-image framework that can efficiently generate images up to 4096times4096 resolution. Sana can synthesize high-resolution, high-quality images with strong text-image alignment at a remarkably fast speed, deployable on laptop GPU. Core designs include: (1) Deep compression autoencoder: unlike traditional AEs, which compress images only 8times, we trained an AE that can compress images 32times, effectively reducing the number of latent tokens. (2) Linear DiT: we replace all vanilla attention in DiT with linear attention, which is more efficient at high resolutions without sacrificing quality. (3) Decoder-only text encoder: we replaced T5 with modern decoder-only small LLM as the text encoder and designed complex human instruction with in-context learning to enhance the image-text alignment. (4) Efficient training and sampling: we propose Flow-DPM-Solver to reduce sampling steps, with efficient caption labeling and selection to accelerate convergence. As a result, Sana-0.6B is very competitive with modern giant diffusion model (e.g. Flux-12B), being 20 times smaller and 100+ times faster in measured throughput. Moreover, Sana-0.6B can be deployed on a 16GB laptop GPU, taking less than 1 second to generate a 1024times1024 resolution image. Sana enables content creation at low cost. Code and model will be publicly released.
LaDiR: Latent Diffusion Enhances LLMs for Text Reasoning
Large Language Models (LLMs) demonstrate their reasoning ability through chain-of-thought (CoT) generation. However, LLM's autoregressive decoding may limit the ability to revisit and refine earlier tokens in a holistic manner, which can also lead to inefficient exploration for diverse solutions. In this paper, we propose LaDiR (Latent Diffusion Reasoner), a novel reasoning framework that unifies the expressiveness of continuous latent representation with the iterative refinement capabilities of latent diffusion models for an existing LLM. We first construct a structured latent reasoning space using a Variational Autoencoder (VAE) that encodes text reasoning steps into blocks of thought tokens, preserving semantic information and interpretability while offering compact but expressive representations. Subsequently, we utilize a latent diffusion model that learns to denoise a block of latent thought tokens with a blockwise bidirectional attention mask, enabling longer horizon and iterative refinement with adaptive test-time compute. This design allows efficient parallel generation of diverse reasoning trajectories, allowing the model to plan and revise the reasoning process holistically. We conduct evaluations on a suite of mathematical reasoning and planning benchmarks. Empirical results show that LaDiR consistently improves accuracy, diversity, and interpretability over existing autoregressive, diffusion-based, and latent reasoning methods, revealing a new paradigm for text reasoning with latent diffusion.
Parallel Continuous Chain-of-Thought with Jacobi Iteration
Continuous chain-of-thought has been shown to be effective in saving reasoning tokens for large language models. By reasoning with continuous latent thought tokens, continuous CoT is able to perform implicit reasoning in a compact manner. However, the sequential dependencies between latent thought tokens spoil parallel training, leading to long training time. In this paper, we propose Parallel Continuous Chain-of-Thought (PCCoT), which performs Jacobi iteration on the latent thought tokens, updating them iteratively in parallel instead of sequentially and thus improving both training and inference efficiency of continuous CoT. Experiments demonstrate that by choosing the proper number of iterations, we are able to achieve comparable or even better performance while saving nearly 50% of the training and inference time. Moreover, PCCoT shows better stability and robustness in the training process. Our code is available at https://github.com/whyNLP/PCCoT.
Matryoshka Query Transformer for Large Vision-Language Models
Large Vision-Language Models (LVLMs) typically encode an image into a fixed number of visual tokens (e.g., 576) and process these tokens with a language model. Despite their strong performance, LVLMs face challenges in adapting to varying computational constraints. This raises the question: can we achieve flexibility in the number of visual tokens to suit different tasks and computational resources? We answer this with an emphatic yes. Inspired by Matryoshka Representation Learning, we introduce the Matryoshka Query Transformer (MQT), capable of encoding an image into m visual tokens during inference, where m can be any number up to a predefined maximum. This is achieved by employing a query transformer with M latent query tokens to compress the visual embeddings. During each training step, we randomly select m <= M latent query tokens and train the model using only these first m tokens, discarding the rest. Combining MQT with LLaVA, we train a single model once, and flexibly and drastically reduce the number of inference-time visual tokens while maintaining similar or better performance compared to training independent models for each number of tokens. Our model, MQT-LLAVA, matches LLaVA-1.5 performance across 11 benchmarks using a maximum of 256 tokens instead of LLaVA's fixed 576. Reducing to 16 tokens (8x less TFLOPs) only sacrifices the performance by 2.4 points on MMBench. On certain tasks such as ScienceQA and MMMU, we can even go down to only 2 visual tokens with performance drops of just 3% and 6% each. Our exploration of the trade-off between the accuracy and computational cost brought about by the number of visual tokens facilitates future research to achieve the best of both worlds.
LazyEviction: Lagged KV Eviction with Attention Pattern Observation for Efficient Long Reasoning
Large Language Models (LLMs) exhibit enhanced reasoning capabilities by employing Chain-of-Thought (CoT). However, the extended reasoning sequences introduce significant GPU memory overhead due to increased key-value (KV) cache size, particularly in tasks requiring long reasoning sequences, such as mathematics and programming. Existing KV cache compression methods mitigate memory bottlenecks but struggle in long reasoning tasks. In this paper, we analyze attention patterns in reasoning tasks and reveal a Token Importance Recurrence phenomenon: a large proportion of tokens receive renewed attention after multiple decoding steps, which is failed to capture by existing works and may lead to unpredictable eviction on such periodically critical tokens. To address this, we propose LazyEviction, a lagged KV eviction framework designed to maintain reasoning performance while reducing KV memory. LazyEviction is an Observation Window-based Lagged Eviction Mechanism retaining latent recurring tokens by performing lagged evictions across decoding steps, which contains two key components: (1) Recurrence Interval Tracking for capturing temporal variations in token importance, and (2) an Maximum Recurrence Interval-Centric Eviction Policy that prioritizes eviction based on tokens' recurrence patterns. Extensive experiments demonstrate that LazyEviction reduces KV cache size by 50% while maintaining comparable accuracy on mathematics reasoning datasets, outperforming state-of-the-art methods. Our findings highlight the importance of preserving recurring tokens, which are critical for maintaining knowledge continuity in multi-step reasoning tasks.
Generating 3D House Wireframes with Semantics
We present a new approach for generating 3D house wireframes with semantic enrichment using an autoregressive model. Unlike conventional generative models that independently process vertices, edges, and faces, our approach employs a unified wire-based representation for improved coherence in learning 3D wireframe structures. By re-ordering wire sequences based on semantic meanings, we facilitate seamless semantic integration during sequence generation. Our two-phase technique merges a graph-based autoencoder with a transformer-based decoder to learn latent geometric tokens and generate semantic-aware wireframes. Through iterative prediction and decoding during inference, our model produces detailed wireframes that can be easily segmented into distinct components, such as walls, roofs, and rooms, reflecting the semantic essence of the shape. Empirical results on a comprehensive house dataset validate the superior accuracy, novelty, and semantic fidelity of our model compared to existing generative models. More results and details can be found on https://vcc.tech/research/2024/3DWire.
BEVWorld: A Multimodal World Simulator for Autonomous Driving via Scene-Level BEV Latents
World models have attracted increasing attention in autonomous driving for their ability to forecast potential future scenarios. In this paper, we propose BEVWorld, a novel framework that transforms multimodal sensor inputs into a unified and compact Bird's Eye View (BEV) latent space for holistic environment modeling. The proposed world model consists of two main components: a multi-modal tokenizer and a latent BEV sequence diffusion model. The multi-modal tokenizer first encodes heterogeneous sensory data, and its decoder reconstructs the latent BEV tokens into LiDAR and surround-view image observations via ray-casting rendering in a self-supervised manner. This enables joint modeling and bidirectional encoding-decoding of panoramic imagery and point cloud data within a shared spatial representation. On top of this, the latent BEV sequence diffusion model performs temporally consistent forecasting of future scenes, conditioned on high-level action tokens, enabling scene-level reasoning over time. Extensive experiments demonstrate the effectiveness of BEVWorld on autonomous driving benchmarks, showcasing its capability in realistic future scene generation and its benefits for downstream tasks such as perception and motion prediction.
Expressive Neural Voice Cloning
Voice cloning is the task of learning to synthesize the voice of an unseen speaker from a few samples. While current voice cloning methods achieve promising results in Text-to-Speech (TTS) synthesis for a new voice, these approaches lack the ability to control the expressiveness of synthesized audio. In this work, we propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker. We achieve this by explicitly conditioning the speech synthesis model on a speaker encoding, pitch contour and latent style tokens during training. Through both quantitative and qualitative evaluations, we show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker. These cloning tasks include style transfer from a reference speech, synthesizing speech directly from text, and fine-grained style control by manipulating the style conditioning variables during inference.
Chain-of-Visual-Thought: Teaching VLMs to See and Think Better with Continuous Visual Tokens
Vision-Language Models (VLMs) excel at reasoning in linguistic space but struggle with perceptual understanding that requires dense visual perception, e.g., spatial reasoning and geometric awareness. This limitation stems from the fact that current VLMs have limited mechanisms to capture dense visual information across spatial dimensions. We introduce Chain-of-Visual-Thought (COVT), a framework that enables VLMs to reason not only in words but also through continuous visual tokens-compact latent representations that encode rich perceptual cues. Within a small budget of roughly 20 tokens, COVT distills knowledge from lightweight vision experts, capturing complementary properties such as 2D appearance, 3D geometry, spatial layout, and edge structure. During training, the VLM with COVT autoregressively predicts these visual tokens to reconstruct dense supervision signals (e.g., depth, segmentation, edges, and DINO features). At inference, the model reasons directly in the continuous visual token space, preserving efficiency while optionally decoding dense predictions for interpretability. Evaluated across more than ten diverse perception benchmarks, including CV-Bench, MMVP, RealWorldQA, MMStar, WorldMedQA, and HRBench, integrating COVT into strong VLMs such as Qwen2.5-VL and LLaVA consistently improves performance by 3% to 16% and demonstrates that compact continuous visual thinking enables more precise, grounded, and interpretable multimodal intelligence.
MixAT: Combining Continuous and Discrete Adversarial Training for LLMs
Despite recent efforts in Large Language Models (LLMs) safety and alignment, current adversarial attacks on frontier LLMs are still able to force harmful generations consistently. Although adversarial training has been widely studied and shown to significantly improve the robustness of traditional machine learning models, its strengths and weaknesses in the context of LLMs are less understood. Specifically, while existing discrete adversarial attacks are effective at producing harmful content, training LLMs with concrete adversarial prompts is often computationally expensive, leading to reliance on continuous relaxations. As these relaxations do not correspond to discrete input tokens, such latent training methods often leave models vulnerable to a diverse set of discrete attacks. In this work, we aim to bridge this gap by introducing MixAT, a novel method that combines stronger discrete and faster continuous attacks during training. We rigorously evaluate MixAT across a wide spectrum of state-of-the-art attacks, proposing the At Least One Attack Success Rate (ALO-ASR) metric to capture the worst-case vulnerability of models. We show MixAT achieves substantially better robustness (ALO-ASR < 20%) compared to prior defenses (ALO-ASR > 50%), while maintaining a runtime comparable to methods based on continuous relaxations. We further analyze MixAT in realistic deployment settings, exploring how chat templates, quantization, low-rank adapters, and temperature affect both adversarial training and evaluation, revealing additional blind spots in current methodologies. Our results demonstrate that MixAT's discrete-continuous defense offers a principled and superior robustness-accuracy tradeoff with minimal computational overhead, highlighting its promise for building safer LLMs. We provide our code and models at https://github.com/insait-institute/MixAT.
LatentWarp: Consistent Diffusion Latents for Zero-Shot Video-to-Video Translation
Leveraging the generative ability of image diffusion models offers great potential for zero-shot video-to-video translation. The key lies in how to maintain temporal consistency across generated video frames by image diffusion models. Previous methods typically adopt cross-frame attention, i.e., sharing the key and value tokens across attentions of different frames, to encourage the temporal consistency. However, in those works, temporal inconsistency issue may not be thoroughly solved, rendering the fidelity of generated videos limited.%The current state of the art cross-frame attention method aims at maintaining fine-grained visual details across frames, but it is still challenged by the temporal coherence problem. In this paper, we find the bottleneck lies in the unconstrained query tokens and propose a new zero-shot video-to-video translation framework, named LatentWarp. Our approach is simple: to constrain the query tokens to be temporally consistent, we further incorporate a warping operation in the latent space to constrain the query tokens. Specifically, based on the optical flow obtained from the original video, we warp the generated latent features of last frame to align with the current frame during the denoising process. As a result, the corresponding regions across the adjacent frames can share closely-related query tokens and attention outputs, which can further improve latent-level consistency to enhance visual temporal coherence of generated videos. Extensive experiment results demonstrate the superiority of LatentWarp in achieving video-to-video translation with temporal coherence.
BAMM: Bidirectional Autoregressive Motion Model
Generating human motion from text has been dominated by denoising motion models either through diffusion or generative masking process. However, these models face great limitations in usability by requiring prior knowledge of the motion length. Conversely, autoregressive motion models address this limitation by adaptively predicting motion endpoints, at the cost of degraded generation quality and editing capabilities. To address these challenges, we propose Bidirectional Autoregressive Motion Model (BAMM), a novel text-to-motion generation framework. BAMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into discrete tokens in latent space, and (2) a masked self-attention transformer that autoregressively predicts randomly masked tokens via a hybrid attention masking strategy. By unifying generative masked modeling and autoregressive modeling, BAMM captures rich and bidirectional dependencies among motion tokens, while learning the probabilistic mapping from textual inputs to motion outputs with dynamically-adjusted motion sequence length. This feature enables BAMM to simultaneously achieving high-quality motion generation with enhanced usability and built-in motion editability. Extensive experiments on HumanML3D and KIT-ML datasets demonstrate that BAMM surpasses current state-of-the-art methods in both qualitative and quantitative measures. Our project page is available at https://exitudio.github.io/BAMM-page
MMM: Generative Masked Motion Model
Recent advances in text-to-motion generation using diffusion and autoregressive models have shown promising results. However, these models often suffer from a trade-off between real-time performance, high fidelity, and motion editability. To address this gap, we introduce MMM, a novel yet simple motion generation paradigm based on Masked Motion Model. MMM consists of two key components: (1) a motion tokenizer that transforms 3D human motion into a sequence of discrete tokens in latent space, and (2) a conditional masked motion transformer that learns to predict randomly masked motion tokens, conditioned on the pre-computed text tokens. By attending to motion and text tokens in all directions, MMM explicitly captures inherent dependency among motion tokens and semantic mapping between motion and text tokens. During inference, this allows parallel and iterative decoding of multiple motion tokens that are highly consistent with fine-grained text descriptions, therefore simultaneously achieving high-fidelity and high-speed motion generation. In addition, MMM has innate motion editability. By simply placing mask tokens in the place that needs editing, MMM automatically fills the gaps while guaranteeing smooth transitions between editing and non-editing parts. Extensive experiments on the HumanML3D and KIT-ML datasets demonstrate that MMM surpasses current leading methods in generating high-quality motion (evidenced by superior FID scores of 0.08 and 0.429), while offering advanced editing features such as body-part modification, motion in-betweening, and the synthesis of long motion sequences. In addition, MMM is two orders of magnitude faster on a single mid-range GPU than editable motion diffusion models. Our project page is available at https://exitudio.github.io/MMM-page.
Highly Compressed Tokenizer Can Generate Without Training
Commonly used image tokenizers produce a 2D grid of spatially arranged tokens. In contrast, so-called 1D image tokenizers represent images as highly compressed one-dimensional sequences of as few as 32 discrete tokens. We find that the high degree of compression achieved by a 1D tokenizer with vector quantization enables image editing and generative capabilities through heuristic manipulation of tokens, demonstrating that even very crude manipulations -- such as copying and replacing tokens between latent representations of images -- enable fine-grained image editing by transferring appearance and semantic attributes. Motivated by the expressivity of the 1D tokenizer's latent space, we construct an image generation pipeline leveraging gradient-based test-time optimization of tokens with plug-and-play loss functions such as reconstruction or CLIP similarity. Our approach is demonstrated for inpainting and text-guided image editing use cases, and can generate diverse and realistic samples without requiring training of any generative model.
LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding
Auto-Regressive (AR) models have recently gained prominence in image generation, often matching or even surpassing the performance of diffusion models. However, one major limitation of AR models is their sequential nature, which processes tokens one at a time, slowing down generation compared to models like GANs or diffusion-based methods that operate more efficiently. While speculative decoding has proven effective for accelerating LLMs by generating multiple tokens in a single forward, its application in visual AR models remains largely unexplored. In this work, we identify a challenge in this setting, which we term token selection ambiguity, wherein visual AR models frequently assign uniformly low probabilities to tokens, hampering the performance of speculative decoding. To overcome this challenge, we propose a relaxed acceptance condition referred to as LANTERN that leverages the interchangeability of tokens in latent space. This relaxation restores the effectiveness of speculative decoding in visual AR models by enabling more flexible use of candidate tokens that would otherwise be prematurely rejected. Furthermore, by incorporating a total variation distance bound, we ensure that these speed gains are achieved without significantly compromising image quality or semantic coherence. Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding. In specific, compared to a na\"ive application of the state-of-the-art speculative decoding, LANTERN increases speed-ups by 1.75times and 1.76times, as compared to greedy decoding and random sampling, respectively, when applied to LlamaGen, a contemporary visual AR model.
On the Origins of Linear Representations in Large Language Models
Recent works have argued that high-level semantic concepts are encoded "linearly" in the representation space of large language models. In this work, we study the origins of such linear representations. To that end, we introduce a simple latent variable model to abstract and formalize the concept dynamics of the next token prediction. We use this formalism to show that the next token prediction objective (softmax with cross-entropy) and the implicit bias of gradient descent together promote the linear representation of concepts. Experiments show that linear representations emerge when learning from data matching the latent variable model, confirming that this simple structure already suffices to yield linear representations. We additionally confirm some predictions of the theory using the LLaMA-2 large language model, giving evidence that the simplified model yields generalizable insights.
"Principal Components" Enable A New Language of Images
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space. While existing visual tokenizers primarily optimize for reconstruction fidelity, they often neglect the structural properties of the latent space -- a critical factor for both interpretability and downstream tasks. Our method generates a 1D causal token sequence for images, where each successive token contributes non-overlapping information with mathematically guaranteed decreasing explained variance, analogous to principal component analysis. This structural constraint ensures the tokenizer extracts the most salient visual features first, with each subsequent token adding diminishing yet complementary information. Additionally, we identified and resolved a semantic-spectrum coupling effect that causes the unwanted entanglement of high-level semantic content and low-level spectral details in the tokens by leveraging a diffusion decoder. Experiments demonstrate that our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system. Moreover, auto-regressive models trained on our token sequences achieve performance comparable to current state-of-the-art methods while requiring fewer tokens for training and inference.
Token Alignment via Character Matching for Subword Completion
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.
Adapting Self-Supervised Representations as a Latent Space for Efficient Generation
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow matching objective. This adaptation enriches the token with low-level, reconstruction-relevant details, enabling faithful image reconstruction. To preserve the favorable geometry of the original SSL space, we add a cosine-similarity loss that regularizes the adapted token, ensuring the latent space remains smooth and suitable for generation. Our single-token formulation resolves spatial redundancies of 2D latent spaces and significantly reduces training costs. Despite its simplicity and efficiency, RepTok achieves competitive results on class-conditional ImageNet generation and naturally extends to text-to-image synthesis, reaching competitive zero-shot performance on MS-COCO under extremely limited training budgets. Our findings highlight the potential of fine-tuned SSL representations as compact and effective latent spaces for efficient generative modeling.
Masked Autoencoders Are Effective Tokenizers for Diffusion Models
Recent advances in latent diffusion models have demonstrated their effectiveness for high-resolution image synthesis. However, the properties of the latent space from tokenizer for better learning and generation of diffusion models remain under-explored. Theoretically and empirically, we find that improved generation quality is closely tied to the latent distributions with better structure, such as the ones with fewer Gaussian Mixture modes and more discriminative features. Motivated by these insights, we propose MAETok, an autoencoder (AE) leveraging mask modeling to learn semantically rich latent space while maintaining reconstruction fidelity. Extensive experiments validate our analysis, demonstrating that the variational form of autoencoders is not necessary, and a discriminative latent space from AE alone enables state-of-the-art performance on ImageNet generation using only 128 tokens. MAETok achieves significant practical improvements, enabling a gFID of 1.69 with 76x faster training and 31x higher inference throughput for 512x512 generation. Our findings show that the structure of the latent space, rather than variational constraints, is crucial for effective diffusion models. Code and trained models are released.
Ming-UniVision: Joint Image Understanding and Generation with a Unified Continuous Tokenizer
Visual tokenization remains a core challenge in unifying visual understanding and generation within the autoregressive paradigm. Existing methods typically employ tokenizers in discrete latent spaces to align with the tokens from large language models, where the quantization errors can limit semantic expressiveness and degrade the capability of vision-language understanding. To address this, we introduce MingTok, a new family of visual tokenizers with a continuous latent space, for unified autoregressive generation and understanding. While understanding tasks favor discriminative high-dimensional features, generation tasks prefer compact low-level codes. Thus, to reconcile these competing demands, MingTok adopts a three-stage sequential architecture involving low-level encoding, semantic expansion, and visual reconstruction. Built on top of it, Ming-UniVision eliminates the need for task-specific visual representations, and unifies diverse vision-language tasks under a single autoregrsssive prediction paradigm. By formulating both understanding and generation as next-token prediction in a shared continuous space, it seamlessly supports multi-round, in-context tasks such as iterative understanding, generation and editing. Empirically, we find that using a unified continuous visual representation reconciles the competing requirements on the tokenizers by the understanding and generation tasks, thereby leading to state-of-the-art level performance across both domains. We hope our findings will facilitate unified visual tokenization in the continuous domain. Inference code and model weights are released to benefit community.
Scalable Language Models with Posterior Inference of Latent Thought Vectors
We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.
Multimodal Latent Language Modeling with Next-Token Diffusion
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video). In this work, we propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers. Specifically, we employ a variational autoencoder (VAE) to represent continuous data as latent vectors and introduce next-token diffusion for autoregressive generation of these vectors. Additionally, we develop sigma-VAE to address the challenges of variance collapse, which is crucial for autoregressive modeling. Extensive experiments demonstrate the effectiveness of LatentLM across various modalities. In image generation, LatentLM surpasses Diffusion Transformers in both performance and scalability. When integrated into multimodal large language models, LatentLM provides a general-purpose interface that unifies multimodal generation and understanding. Experimental results show that LatentLM achieves favorable performance compared to Transfusion and vector quantized models in the setting of scaling up training tokens. In text-to-speech synthesis, LatentLM outperforms the state-of-the-art VALL-E 2 model in speaker similarity and robustness, while requiring 10x fewer decoding steps. The results establish LatentLM as a highly effective and scalable approach to advance large multimodal models.
Discovering Failure Modes of Text-guided Diffusion Models via Adversarial Search
Text-guided diffusion models (TDMs) are widely applied but can fail unexpectedly. Common failures include: (i) natural-looking text prompts generating images with the wrong content, or (ii) different random samples of the latent variables that generate vastly different, and even unrelated, outputs despite being conditioned on the same text prompt. In this work, we aim to study and understand the failure modes of TDMs in more detail. To achieve this, we propose SAGE, the first adversarial search method on TDMs that systematically explores the discrete prompt space and the high-dimensional latent space, to automatically discover undesirable behaviors and failure cases in image generation. We use image classifiers as surrogate loss functions during searching, and employ human inspections to validate the identified failures. For the first time, our method enables efficient exploration of both the discrete and intricate human language space and the challenging latent space, overcoming the gradient vanishing problem. Then, we demonstrate the effectiveness of SAGE on five widely used generative models and reveal four typical failure modes: (1) We find a variety of natural text prompts that generate images failing to capture the semantics of input texts. We further discuss the underlying causes and potential solutions based on the results. (2) We find regions in the latent space that lead to distorted images independent of the text prompt, suggesting that parts of the latent space are not well-structured. (3) We also find latent samples that result in natural-looking images unrelated to the text prompt, implying a possible misalignment between the latent and prompt spaces. (4) By appending a single adversarial token embedding to any input prompts, we can generate a variety of specified target objects. Project page: https://sage-diffusion.github.io/
Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling
Diffusion models have emerged as a powerful tool for generating high-quality images from textual descriptions. Despite their successes, these models often exhibit limited diversity in the sampled images, particularly when sampling with a high classifier-free guidance weight. To address this issue, we present Kaleido, a novel approach that enhances the diversity of samples by incorporating autoregressive latent priors. Kaleido integrates an autoregressive language model that encodes the original caption and generates latent variables, serving as abstract and intermediary representations for guiding and facilitating the image generation process. In this paper, we explore a variety of discrete latent representations, including textual descriptions, detection bounding boxes, object blobs, and visual tokens. These representations diversify and enrich the input conditions to the diffusion models, enabling more diverse outputs. Our experimental results demonstrate that Kaleido effectively broadens the diversity of the generated image samples from a given textual description while maintaining high image quality. Furthermore, we show that Kaleido adheres closely to the guidance provided by the generated latent variables, demonstrating its capability to effectively control and direct the image generation process.
Layton: Latent Consistency Tokenizer for 1024-pixel Image Reconstruction and Generation by 256 Tokens
Image tokenization has significantly advanced visual generation and multimodal modeling, particularly when paired with autoregressive models. However, current methods face challenges in balancing efficiency and fidelity: high-resolution image reconstruction either requires an excessive number of tokens or compromises critical details through token reduction. To resolve this, we propose Latent Consistency Tokenizer (Layton) that bridges discrete visual tokens with the compact latent space of pre-trained Latent Diffusion Models (LDMs), enabling efficient representation of 1024x1024 images using only 256 tokens-a 16 times compression over VQGAN. Layton integrates a transformer encoder, a quantized codebook, and a latent consistency decoder. Direct application of LDM as the decoder results in color and brightness discrepancies. Thus, we convert it to latent consistency decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervision. Experiments demonstrate Layton's superiority in high-fidelity reconstruction, with 10.8 reconstruction Frechet Inception Distance on MSCOCO-2017 5K benchmark for 1024x1024 image reconstruction. We also extend Layton to a text-to-image generation model, LaytonGen, working in autoregression. It achieves 0.73 score on GenEval benchmark, surpassing current state-of-the-art methods. Project homepage: https://github.com/OPPO-Mente-Lab/Layton
Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation
Image tokenization plays a critical role in reducing the computational demands of modeling high-resolution images, significantly improving the efficiency of image and multimodal understanding and generation. Recent advances in 1D latent spaces have reduced the number of tokens required by eliminating the need for a 2D grid structure. In this paper, we further advance compact discrete image representation by introducing 1D binary image latents. By representing each image as a sequence of binary vectors, rather than using traditional one-hot codebook tokens, our approach preserves high-resolution details while maintaining the compactness of 1D latents. To the best of our knowledge, our text-to-image models are the first to achieve competitive performance in both diffusion and auto-regressive generation using just 128 discrete tokens for images up to 1024x1024, demonstrating up to a 32-fold reduction in token numbers compared to standard VQ-VAEs. The proposed 1D binary latent space, coupled with simple model architectures, achieves marked improvements in speed training and inference speed. Our text-to-image models allow for a global batch size of 4096 on a single GPU node with 8 AMD MI300X GPUs, and the training can be completed within 200 GPU days. Our models achieve competitive performance compared to modern image generation models without any in-house private training data or post-training refinements, offering a scalable and efficient alternative to conventional tokenization methods.
TokenCompose: Grounding Diffusion with Token-level Supervision
We present TokenCompose, a Latent Diffusion Model for text-to-image generation that achieves enhanced consistency between user-specified text prompts and model-generated images. Despite its tremendous success, the standard denoising process in the Latent Diffusion Model takes text prompts as conditions only, absent explicit constraint for the consistency between the text prompts and the image contents, leading to unsatisfactory results for composing multiple object categories. TokenCompose aims to improve multi-category instance composition by introducing the token-wise consistency terms between the image content and object segmentation maps in the finetuning stage. TokenCompose can be applied directly to the existing training pipeline of text-conditioned diffusion models without extra human labeling information. By finetuning Stable Diffusion, the model exhibits significant improvements in multi-category instance composition and enhanced photorealism for its generated images.
Robust Latent Matters: Boosting Image Generation with Sampling Error
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a sim400M generator. Code: https://github.com/lxa9867/ImageFolder.
Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective
Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.
Image Tokenizer Needs Post-Training
Recent image generative models typically capture the image distribution in a pre-constructed latent space, relying on a frozen image tokenizer. However, there exists a significant discrepancy between the reconstruction and generation distribution, where current tokenizers only prioritize the reconstruction task that happens before generative training without considering the generation errors during sampling. In this paper, we comprehensively analyze the reason for this discrepancy in a discrete latent space, and, from which, we propose a novel tokenizer training scheme including both main-training and post-training, focusing on improving latent space construction and decoding respectively. During the main training, a latent perturbation strategy is proposed to simulate sampling noises, \ie, the unexpected tokens generated in generative inference. Specifically, we propose a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer, thus boosting the generation quality and convergence speed, and a novel tokenizer evaluation metric, \ie, pFID, which successfully correlates the tokenizer performance to generation quality. During post-training, we further optimize the tokenizer decoder regarding a well-trained generative model to mitigate the distribution difference between generated and reconstructed tokens. With a sim400M generator, a discrete tokenizer trained with our proposed main training achieves a notable 1.60 gFID and further obtains 1.36 gFID with the additional post-training. Further experiments are conducted to broadly validate the effectiveness of our post-training strategy on off-the-shelf discrete and continuous tokenizers, coupled with autoregressive and diffusion-based generators.
Text2Token: Unsupervised Text Representation Learning with Token Target Prediction
Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.
Byte Latent Transformer: Patches Scale Better Than Tokens
We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating more compute and model capacity where increased data complexity demands it. We present the first FLOP controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.
Learning to Decode Collaboratively with Multiple Language Models
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level. We model the decision of which LLM generates the next token as a latent variable. By optimizing the marginal likelihood of a training set under our latent variable model, the base LLM automatically learns when to generate itself and when to call on one of the ``assistant'' language models to generate, all without direct supervision. Token-level collaboration during decoding allows for a fusion of each model's expertise in a manner tailored to the specific task at hand. Our collaborative decoding is especially useful in cross-domain settings where a generalist base LLM learns to invoke domain expert models. On instruction-following, domain-specific QA, and reasoning tasks, we show that the performance of the joint system exceeds that of the individual models. Through qualitative analysis of the learned latent decisions, we show models trained with our method exhibit several interesting collaboration patterns, e.g., template-filling. Our code is available at https://github.com/clinicalml/co-llm.
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
ImageFolder: Autoregressive Image Generation with Folded Tokens
Image tokenizers are crucial for visual generative models, e.g., diffusion models (DMs) and autoregressive (AR) models, as they construct the latent representation for modeling. Increasing token length is a common approach to improve the image reconstruction quality. However, tokenizers with longer token lengths are not guaranteed to achieve better generation quality. There exists a trade-off between reconstruction and generation quality regarding token length. In this paper, we investigate the impact of token length on both image reconstruction and generation and provide a flexible solution to the tradeoff. We propose ImageFolder, a semantic tokenizer that provides spatially aligned image tokens that can be folded during autoregressive modeling to improve both generation efficiency and quality. To enhance the representative capability without increasing token length, we leverage dual-branch product quantization to capture different contexts of images. Specifically, semantic regularization is introduced in one branch to encourage compacted semantic information while another branch is designed to capture the remaining pixel-level details. Extensive experiments demonstrate the superior quality of image generation and shorter token length with ImageFolder tokenizer.
FLASH: Latent-Aware Semi-Autoregressive Speculative Decoding for Multimodal Tasks
Large language and multimodal models (LLMs and LMMs) exhibit strong inference capabilities but are often limited by slow decoding speeds. This challenge is especially acute in LMMs, where visual inputs typically comprise more tokens with lower information density than text -- an issue exacerbated by recent trends toward finer-grained visual tokenizations to boost performance. Speculative decoding has been effective in accelerating LLM inference by using a smaller draft model to generate candidate tokens, which are then selectively verified by the target model, improving speed without sacrificing output quality. While this strategy has been extended to LMMs, existing methods largely overlook the unique properties of visual inputs and depend solely on text-based draft models. In this work, we propose FLASH (Fast Latent-Aware Semi-Autoregressive Heuristics), a speculative decoding framework designed specifically for LMMs, which leverages two key properties of multimodal data to design the draft model. First, to address redundancy in visual tokens, we propose a lightweight latent-aware token compression mechanism. Second, recognizing that visual objects often co-occur within a scene, we employ a semi-autoregressive decoding strategy to generate multiple tokens per forward pass. These innovations accelerate draft decoding while maintaining high acceptance rates, resulting in faster overall inference. Experiments show that FLASH significantly outperforms prior speculative decoding approaches in both unimodal and multimodal settings, achieving up to 2.68times speed-up on video captioning and 2.55times on visual instruction tuning tasks compared to the original LMM. Our code is available https://github.com/ZihuaEvan/FlashSD/{[here]}.
Token Erasure as a Footprint of Implicit Vocabulary Items in LLMs
LLMs process text as sequences of tokens that roughly correspond to words, where less common words are represented by multiple tokens. However, individual tokens are often semantically unrelated to the meanings of the words/concepts they comprise. For example, Llama-2-7b's tokenizer splits the word "northeastern" into the tokens ['_n', 'ort', 'he', 'astern'], none of which correspond to semantically meaningful units like "north" or "east." Similarly, the overall meanings of named entities like "Neil Young" and multi-word expressions like "break a leg" cannot be directly inferred from their constituent tokens. Mechanistically, how do LLMs convert such arbitrary groups of tokens into useful higher-level representations? In this work, we find that last token representations of named entities and multi-token words exhibit a pronounced "erasure" effect, where information about previous and current tokens is rapidly forgotten in early layers. Using this observation, we propose a method to "read out" the implicit vocabulary of an autoregressive LLM by examining differences in token representations across layers, and present results of this method for Llama-2-7b and Llama-3-8B. To our knowledge, this is the first attempt to probe the implicit vocabulary of an LLM.
From Tokens to Words: On the Inner Lexicon of LLMs
Natural language is composed of words, but modern large language models (LLMs) process sub-words as input. A natural question raised by this discrepancy is whether LLMs encode words internally, and if so how. We present evidence that LLMs engage in an intrinsic detokenization process, where sub-word sequences are combined into coherent whole-word representations at their last token. Our experiments show that this process primarily takes place within the early and middle layers of the model. We further demonstrate its robustness to arbitrary splits (e.g., "cats" to "ca" and "ts"), typos, and importantly-to out-of-vocabulary words: when feeding the last token internal representations of such words to the model as input, it can "understand" them as the complete word despite never seeing such representations as input during training. Our findings suggest that LLMs maintain a latent vocabulary beyond the tokenizer's scope. These insights provide a practical, finetuning-free application for expanding the vocabulary of pre-trained models. By enabling the addition of new vocabulary words, we reduce input length and inference iterations, which reduces both space and model latency, with little to no loss in model accuracy.
Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models
Recently, multimodal large language models (MM-LLMs) have achieved significant success in various tasks, but their high computational costs limit widespread application. The main computational burden arises from processing concatenated text and visual tokens in the LLM layer, where input token length directly affects efficiency. Our analysis of visual tokens reveals that their similarity to the CLS token follows a long-tail distribution, with only a few showing high similarity. To address this, we propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve, enabling effective trimming of visual markers to accelerate model performance. Additionally, we perform a second round of pruning in the LLM layer, filtering out low-correlation tokens through the interaction between visual and textual features. Experimental results demonstrate that our method achieves performance comparable to the original while utilizing only 22% of the original token quantity. Our source code will be made publicly available upon acceptance.
MergeDNA: Context-aware Genome Modeling with Dynamic Tokenization through Token Merging
Modeling genomic sequences faces two unsolved challenges: the information density varies widely across different regions, while there is no clearly defined minimum vocabulary unit. Relying on either four primitive bases or independently designed DNA tokenizers, existing approaches with naive masked language modeling pre-training often fail to adapt to the varying complexities of genomic sequences. Leveraging Token Merging techniques, this paper introduces a hierarchical architecture that jointly optimizes a dynamic genomic tokenizer and latent Transformers with context-aware pre-training tasks. As for network structures, the tokenization module automatically chunks adjacent bases into words by stacking multiple layers of the differentiable token merging blocks with local-window constraints, then a Latent Encoder captures the global context of these merged words by full-attention blocks. Symmetrically employing a Latent Decoder and a Local Decoder, MergeDNA learns with two pre-training tasks: Merged Token Reconstruction simultaneously trains the dynamic tokenization module and adaptively filters important tokens, while Adaptive Masked Token Modeling learns to predict these filtered tokens to capture informative contents. Extensive experiments show that MergeDNA achieves superior performance on three popular DNA benchmarks and several multi-omics tasks with fine-tuning or zero-shot evaluation, outperforming typical tokenization methods and large-scale DNA foundation models.
Language-only Efficient Training of Zero-shot Composed Image Retrieval
Composed image retrieval (CIR) task takes a composed query of image and text, aiming to search relative images for both conditions. Conventional CIR approaches need a training dataset composed of triplets of query image, query text, and target image, which is very expensive to collect. Several recent works have worked on the zero-shot (ZS) CIR paradigm to tackle the issue without using pre-collected triplets. However, the existing ZS-CIR methods show limited backbone scalability and generalizability due to the lack of diversity of the input texts during training. We propose a novel CIR framework, only using language for its training. Our LinCIR (Language-only training for CIR) can be trained only with text datasets by a novel self-supervision named self-masking projection (SMP). We project the text latent embedding to the token embedding space and construct a new text by replacing the keyword tokens of the original text. Then, we let the new and original texts have the same latent embedding vector. With this simple strategy, LinCIR is surprisingly efficient and highly effective; LinCIR with CLIP ViT-G backbone is trained in 48 minutes and shows the best ZS-CIR performances on four different CIR benchmarks, CIRCO, GeneCIS, FashionIQ, and CIRR, even outperforming supervised method on FashionIQ. Code is available at https://github.com/navervision/lincir
The Hidden Language of Diffusion Models
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual concept (e.g., "a doctor", "love"). However, the internal process of mapping text to a rich visual representation remains an enigma. In this work, we tackle the challenge of understanding concept representations in text-to-image models by decomposing an input text prompt into a small set of interpretable elements. This is achieved by learning a pseudo-token that is a sparse weighted combination of tokens from the model's vocabulary, with the objective of reconstructing the images generated for the given concept. Applied over the state-of-the-art Stable Diffusion model, this decomposition reveals non-trivial and surprising structures in the representations of concepts. For example, we find that some concepts such as "a president" or "a composer" are dominated by specific instances (e.g., "Obama", "Biden") and their interpolations. Other concepts, such as "happiness" combine associated terms that can be concrete ("family", "laughter") or abstract ("friendship", "emotion"). In addition to peering into the inner workings of Stable Diffusion, our method also enables applications such as single-image decomposition to tokens, bias detection and mitigation, and semantic image manipulation. Our code will be available at: https://hila-chefer.github.io/Conceptor/
A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) have emerged as a promising approach to decompose the activations of Large Language Models (LLMs) into human-interpretable latents. In this paper, we pose two questions. First, to what extent do SAEs extract monosemantic and interpretable latents? Second, to what extent does varying the sparsity or the size of the SAE affect monosemanticity / interpretability? By investigating these questions in the context of a simple first-letter identification task where we have complete access to ground truth labels for all tokens in the vocabulary, we are able to provide more detail than prior investigations. Critically, we identify a problematic form of feature-splitting we call feature absorption where seemingly monosemantic latents fail to fire in cases where they clearly should. Our investigation suggests that varying SAE size or sparsity is insufficient to solve this issue, and that there are deeper conceptual issues in need of resolution.
An Image is Worth 32 Tokens for Reconstruction and Generation
Recent advancements in generative models have highlighted the crucial role of image tokenization in the efficient synthesis of high-resolution images. Tokenization, which transforms images into latent representations, reduces computational demands compared to directly processing pixels and enhances the effectiveness and efficiency of the generation process. Prior methods, such as VQGAN, typically utilize 2D latent grids with fixed downsampling factors. However, these 2D tokenizations face challenges in managing the inherent redundancies present in images, where adjacent regions frequently display similarities. To overcome this issue, we introduce Transformer-based 1-Dimensional Tokenizer (TiTok), an innovative approach that tokenizes images into 1D latent sequences. TiTok provides a more compact latent representation, yielding substantially more efficient and effective representations than conventional techniques. For example, a 256 x 256 x 3 image can be reduced to just 32 discrete tokens, a significant reduction from the 256 or 1024 tokens obtained by prior methods. Despite its compact nature, TiTok achieves competitive performance to state-of-the-art approaches. Specifically, using the same generator framework, TiTok attains 1.97 gFID, outperforming MaskGIT baseline significantly by 4.21 at ImageNet 256 x 256 benchmark. The advantages of TiTok become even more significant when it comes to higher resolution. At ImageNet 512 x 512 benchmark, TiTok not only outperforms state-of-the-art diffusion model DiT-XL/2 (gFID 2.74 vs. 3.04), but also reduces the image tokens by 64x, leading to 410x faster generation process. Our best-performing variant can significantly surpasses DiT-XL/2 (gFID 2.13 vs. 3.04) while still generating high-quality samples 74x faster.
Seek in the Dark: Reasoning via Test-Time Instance-Level Policy Gradient in Latent Space
Reasoning ability, a core component of human intelligence, continues to pose a significant challenge for Large Language Models (LLMs) in the pursuit of AGI. Although model performance has improved under the training scaling law, significant challenges remain, particularly with respect to training algorithms, such as catastrophic forgetting, and the limited availability of novel training data. As an alternative, test-time scaling enhances reasoning performance by increasing test-time computation without parameter updating. Unlike prior methods in this paradigm focused on token space, we propose leveraging latent space for more effective reasoning and better adherence to the test-time scaling law. We introduce LatentSeek, a novel framework that enhances LLM reasoning through Test-Time Instance-level Adaptation (TTIA) within the model's latent space. Specifically, LatentSeek leverages policy gradient to iteratively update latent representations, guided by self-generated reward signals. LatentSeek is evaluated on a range of reasoning benchmarks, including GSM8K, MATH-500, and AIME2024, across multiple LLM architectures. Results show that LatentSeek consistently outperforms strong baselines, such as Chain-of-Thought prompting and fine-tuning-based methods. Furthermore, our analysis demonstrates that LatentSeek is highly efficient, typically converging within a few iterations for problems of average complexity, while also benefiting from additional iterations, thereby highlighting the potential of test-time scaling in the latent space. These findings position LatentSeek as a lightweight, scalable, and effective solution for enhancing the reasoning capabilities of LLMs.
Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
Variational Masked Diffusion Models
Masked diffusion models have recently emerged as a flexible framework for discrete generative modeling. However, a key limitation of standard masked diffusion is its inability to effectively capture dependencies among tokens that are predicted concurrently, leading to degraded generation quality when dependencies among tokens are important. To explicitly model dependencies among tokens, we propose Variational Masked Diffusion (VMD), a framework that introduces latent variables into the masked diffusion process. Through controlled experiments on synthetic datasets, we demonstrate that VMD successfully learns dependencies that conventional masked diffusion fails to capture. We further validate the effectiveness of our approach on Sudoku puzzles and text datasets, where learning of dependencies among tokens improves global consistency. Across these domains, VMD enhances both generation quality and dependency awareness, highlighting the value of integrating variational inference into masked diffusion. Our code is available at: https://riccizz.github.io/VMD.
Planting a SEED of Vision in Large Language Model
We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.
Hierarchical Masked Autoregressive Models with Low-Resolution Token Pivots
Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.
Mixing Dirichlet Topic Models and Word Embeddings to Make lda2vec
Distributed dense word vectors have been shown to be effective at capturing token-level semantic and syntactic regularities in language, while topic models can form interpretable representations over documents. In this work, we describe lda2vec, a model that learns dense word vectors jointly with Dirichlet-distributed latent document-level mixtures of topic vectors. In contrast to continuous dense document representations, this formulation produces sparse, interpretable document mixtures through a non-negative simplex constraint. Our method is simple to incorporate into existing automatic differentiation frameworks and allows for unsupervised document representations geared for use by scientists while simultaneously learning word vectors and the linear relationships between them.
Reasoning Beyond Language: A Comprehensive Survey on Latent Chain-of-Thought Reasoning
Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Exploring Alignment in Shared Cross-lingual Spaces
Despite their remarkable ability to capture linguistic nuances across diverse languages, questions persist regarding the degree of alignment between languages in multilingual embeddings. Drawing inspiration from research on high-dimensional representations in neural language models, we employ clustering to uncover latent concepts within multilingual models. Our analysis focuses on quantifying the alignment and overlap of these concepts across various languages within the latent space. To this end, we introduce two metrics and aimed at quantifying these aspects, enabling a deeper exploration of multilingual embeddings. Our study encompasses three multilingual models (mT5, mBERT, and XLM-R) and three downstream tasks (Machine Translation, Named Entity Recognition, and Sentiment Analysis). Key findings from our analysis include: i) deeper layers in the network demonstrate increased cross-lingual alignment due to the presence of language-agnostic concepts, ii) fine-tuning of the models enhances alignment within the latent space, and iii) such task-specific calibration helps in explaining the emergence of zero-shot capabilities in the models.The code is available at \url{https://github.com/baselmousi/multilingual-latent-concepts}
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
DeepWalk: Online Learning of Social Representations
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
Order-agnostic Identifier for Large Language Model-based Generative Recommendation
Leveraging Large Language Models (LLMs) for generative recommendation has attracted significant research interest, where item tokenization is a critical step. It involves assigning item identifiers for LLMs to encode user history and generate the next item. Existing approaches leverage either token-sequence identifiers, representing items as discrete token sequences, or single-token identifiers, using ID or semantic embeddings. Token-sequence identifiers face issues such as the local optima problem in beam search and low generation efficiency due to step-by-step generation. In contrast, single-token identifiers fail to capture rich semantics or encode Collaborative Filtering (CF) information, resulting in suboptimal performance. To address these issues, we propose two fundamental principles for item identifier design: 1) integrating both CF and semantic information to fully capture multi-dimensional item information, and 2) designing order-agnostic identifiers without token dependency, mitigating the local optima issue and achieving simultaneous generation for generation efficiency. Accordingly, we introduce a novel set identifier paradigm for LLM-based generative recommendation, representing each item as a set of order-agnostic tokens. To implement this paradigm, we propose SETRec, which leverages CF and semantic tokenizers to obtain order-agnostic multi-dimensional tokens. To eliminate token dependency, SETRec uses a sparse attention mask for user history encoding and a query-guided generation mechanism for simultaneous token generation. We instantiate SETRec on T5 and Qwen (from 1.5B to 7B). Extensive experiments demonstrate its effectiveness under various scenarios (e.g., full ranking, warm- and cold-start ranking, and various item popularity groups). Moreover, results validate SETRec's superior efficiency and show promising scalability on cold-start items as model sizes increase.
Reasoning to Attend: Try to Understand How <SEG> Token Works
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
Critical Tokens Matter: Token-Level Contrastive Estimation Enhence LLM's Reasoning Capability
Large Language Models (LLMs) have exhibited remarkable performance on reasoning tasks. They utilize autoregressive token generation to construct reasoning trajectories, enabling the development of a coherent chain of thought. In this work, we explore the impact of individual tokens on the final outcomes of reasoning tasks. We identify the existence of ``critical tokens'' that lead to incorrect reasoning trajectories in LLMs. Specifically, we find that LLMs tend to produce positive outcomes when forced to decode other tokens instead of critical tokens. Motivated by this observation, we propose a novel approach - cDPO - designed to automatically recognize and conduct token-level rewards for the critical tokens during the alignment process. Specifically, we develop a contrastive estimation approach to automatically identify critical tokens. It is achieved by comparing the generation likelihood of positive and negative models. To achieve this, we separately fine-tune the positive and negative models on various reasoning trajectories, consequently, they are capable of identifying identify critical tokens within incorrect trajectories that contribute to erroneous outcomes. Moreover, to further align the model with the critical token information during the alignment process, we extend the conventional DPO algorithms to token-level DPO and utilize the differential likelihood from the aforementioned positive and negative model as important weight for token-level DPO learning.Experimental results on GSM8K and MATH500 benchmarks with two-widely used models Llama-3 (8B and 70B) and deepseek-math (7B) demonstrate the effectiveness of the propsoed approach cDPO.
Follow the Flow: On Information Flow Across Textual Tokens in Text-to-Image Models
Text-to-Image (T2I) models often suffer from issues such as semantic leakage, incorrect feature binding, and omissions of key concepts in the generated image. This work studies these phenomena by looking into the role of information flow between textual token representations. To this end, we generate images by applying the diffusion component on a subset of contextual token representations in a given prompt and observe several interesting phenomena. First, in many cases, a word or multiword expression is fully represented by one or two tokens, while other tokens are redundant. For example, in "San Francisco's Golden Gate Bridge", the token "gate" alone captures the full expression. We demonstrate the redundancy of these tokens by removing them after textual encoding and generating an image from the resulting representation. Surprisingly, we find that this process not only maintains image generation performance but also reduces errors by 21\% compared to standard generation. We then show that information can also flow between different expressions in a sentence, which often leads to semantic leakage. Based on this observation, we propose a simple, training-free method to mitigate semantic leakage: replacing the leaked item's representation after the textual encoding with its uncontextualized representation. Remarkably, this simple approach reduces semantic leakage by 85\%. Overall, our work provides a comprehensive analysis of information flow across textual tokens in T2I models, offering both novel insights and practical benefits.
Lexinvariant Language Models
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
LatentPrompt: Optimizing Promts in Latent Space
Recent advances have shown that optimizing prompts for Large Language Models (LLMs) can significantly improve task performance, yet many optimization techniques rely on heuristics or manual exploration. We present LatentPrompt, a model-agnostic framework for prompt optimization that leverages latent semantic space to automatically generate, evaluate, and refine candidate prompts without requiring hand-crafted rules. Beginning with a set of seed prompts, our method embeds them in a continuous latent space and systematically explores this space to identify prompts that maximize task-specific performance. In a proof-of-concept study on the Financial PhraseBank sentiment classification benchmark, LatentPrompt increased classification accuracy by approximately 3 percent after a single optimization cycle. The framework is broadly applicable, requiring only black-box access to an LLM and an automatic evaluation metric, making it suitable for diverse domains and tasks.
CAT: Content-Adaptive Image Tokenization
Most existing image tokenizers encode images into a fixed number of tokens or patches, overlooking the inherent variability in image complexity. To address this, we introduce Content-Adaptive Tokenizer (CAT), which dynamically adjusts representation capacity based on the image content and encodes simpler images into fewer tokens. We design a caption-based evaluation system that leverages large language models (LLMs) to predict content complexity and determine the optimal compression ratio for a given image, taking into account factors critical to human perception. Trained on images with diverse compression ratios, CAT demonstrates robust performance in image reconstruction. We also utilize its variable-length latent representations to train Diffusion Transformers (DiTs) for ImageNet generation. By optimizing token allocation, CAT improves the FID score over fixed-ratio baselines trained with the same flops and boosts the inference throughput by 18.5%.
Latent Refinement Decoding: Enhancing Diffusion-Based Language Models by Refining Belief States
Autoregressive (AR) models remain the standard for natural language generation but still suffer from high latency due to strictly sequential decoding. Recent diffusion-inspired approaches, such as LlaDA and Dream, mitigate this by generating in parallel, yet they suffer from two core limitations: information loss, as predictive distributions for non-finalized tokens are discarded at each step, and premature commitment, where local decisions are made without sufficient global coordination. We introduce Latent Refinement Decoding (LRD), a two-stage framework with Latent Refinement and a Predictive Feedback Loop. The first stage maintains masked positions as distributional mixtures of predicted tokens and the mask embedding, allowing the model to establish more globally consistent beliefs. The second stage progressively finalizes confident tokens while retaining uncertain ones for iterative feedback. KL-divergence dynamics provide a principled and reliable criterion for convergence and early stopping. Experiments across coding (HumanEval +6.3, MBPP +2.6) and reasoning (GSM8K +2.9, MATH500 +3.8) show that LRD improves accuracy while delivering speedups of up to 10.6x, making it a strong and versatile alternative for parallel sequence generation.
ExLM: Rethinking the Impact of [MASK] Tokens in Masked Language Models
Masked Language Models (MLMs) have achieved remarkable success in many self-supervised representation learning tasks. MLMs are trained by randomly masking portions of the input sequences with [MASK] tokens and learning to reconstruct the original content based on the remaining context. This paper explores the impact of [MASK] tokens on MLMs. Analytical studies show that masking tokens can introduce the corrupted semantics problem, wherein the corrupted context may convey multiple, ambiguous meanings. This problem is also a key factor affecting the performance of MLMs on downstream tasks. Based on these findings, we propose a novel enhanced-context MLM, ExLM. Our approach expands [MASK] tokens in the input context and models the dependencies between these expanded states. This enhancement increases context capacity and enables the model to capture richer semantic information, effectively mitigating the corrupted semantics problem during pre-training. Experimental results demonstrate that ExLM achieves significant performance improvements in both text modeling and SMILES modeling tasks. Further analysis confirms that ExLM enriches semantic representations through context enhancement, and effectively reduces the semantic multimodality commonly observed in MLMs.
A Latent Variable Model Approach to PMI-based Word Embeddings
Semantic word embeddings represent the meaning of a word via a vector, and are created by diverse methods. Many use nonlinear operations on co-occurrence statistics, and have hand-tuned hyperparameters and reweighting methods. This paper proposes a new generative model, a dynamic version of the log-linear topic model of~mnih2007three. The methodological novelty is to use the prior to compute closed form expressions for word statistics. This provides a theoretical justification for nonlinear models like PMI, word2vec, and GloVe, as well as some hyperparameter choices. It also helps explain why low-dimensional semantic embeddings contain linear algebraic structure that allows solution of word analogies, as shown by~mikolov2013efficient and many subsequent papers. Experimental support is provided for the generative model assumptions, the most important of which is that latent word vectors are fairly uniformly dispersed in space.
Compressed and Smooth Latent Space for Text Diffusion Modeling
Autoregressive language models dominate modern text generation, yet their sequential nature introduces fundamental limitations: decoding is slow, and maintaining global coherence remains challenging. Diffusion models offer a promising alternative by enabling parallel generation and flexible control; however, their application to text generation is hindered by the high dimensionality of token-level representations. We introduce Cosmos, a novel approach to text generation that operates entirely in a compressed, smooth latent space tailored specifically for diffusion. This space is learned using an autoencoder trained simultaneously for token-level reconstruction and alignment with frozen activations from a pretrained language encoder, providing robust semantic grounding and enabling effective perturbation-based augmentations. Empirically, we demonstrate that text representations can be compressed by 8times while maintaining generation quality comparable to token-level diffusion models. Furthermore, increasing the latent sequence length allows Cosmos to surpass both diffusion-based and autoregressive baselines. We evaluate Cosmos on four diverse generative tasks including story generation, question generation, summarization, and detoxification and compare it with various generative paradigms. Cosmos achieves comparable or superior generation quality while offering more than 2times faster inference.
Supervised Graph Contrastive Pretraining for Text Classification
Contrastive pretraining techniques for text classification has been largely studied in an unsupervised setting. However, oftentimes labeled data from related tasks which share label semantics with current task is available. We hypothesize that using this labeled data effectively can lead to better generalization on current task. In this paper, we propose a novel way to effectively utilize labeled data from related tasks with a graph based supervised contrastive learning approach. We formulate a token-graph by extrapolating the supervised information from examples to tokens. Our formulation results in an embedding space where tokens with high/low probability of belonging to same class are near/further-away from one another. We also develop detailed theoretical insights which serve as a motivation for our method. In our experiments with 13 datasets, we show our method outperforms pretraining schemes by 2.5% and also example-level contrastive learning based formulation by 1.8% on average. In addition, we show cross-domain effectiveness of our method in a zero-shot setting by 3.91% on average. Lastly, we also demonstrate our method can be used as a noisy teacher in a knowledge distillation setting to significantly improve performance of transformer based models in low labeled data regime by 4.57% on average.
Text-Conditioned Sampling Framework for Text-to-Image Generation with Masked Generative Models
Token-based masked generative models are gaining popularity for their fast inference time with parallel decoding. While recent token-based approaches achieve competitive performance to diffusion-based models, their generation performance is still suboptimal as they sample multiple tokens simultaneously without considering the dependence among them. We empirically investigate this problem and propose a learnable sampling model, Text-Conditioned Token Selection (TCTS), to select optimal tokens via localized supervision with text information. TCTS improves not only the image quality but also the semantic alignment of the generated images with the given texts. To further improve the image quality, we introduce a cohesive sampling strategy, Frequency Adaptive Sampling (FAS), to each group of tokens divided according to the self-attention maps. We validate the efficacy of TCTS combined with FAS with various generative tasks, demonstrating that it significantly outperforms the baselines in image-text alignment and image quality. Our text-conditioned sampling framework further reduces the original inference time by more than 50% without modifying the original generative model.
Domain-Agnostic Tuning-Encoder for Fast Personalization of Text-To-Image Models
Text-to-image (T2I) personalization allows users to guide the creative image generation process by combining their own visual concepts in natural language prompts. Recently, encoder-based techniques have emerged as a new effective approach for T2I personalization, reducing the need for multiple images and long training times. However, most existing encoders are limited to a single-class domain, which hinders their ability to handle diverse concepts. In this work, we propose a domain-agnostic method that does not require any specialized dataset or prior information about the personalized concepts. We introduce a novel contrastive-based regularization technique to maintain high fidelity to the target concept characteristics while keeping the predicted embeddings close to editable regions of the latent space, by pushing the predicted tokens toward their nearest existing CLIP tokens. Our experimental results demonstrate the effectiveness of our approach and show how the learned tokens are more semantic than tokens predicted by unregularized models. This leads to a better representation that achieves state-of-the-art performance while being more flexible than previous methods.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.
Zero-Shot Clinical Acronym Expansion via Latent Meaning Cells
We introduce Latent Meaning Cells, a deep latent variable model which learns contextualized representations of words by combining local lexical context and metadata. Metadata can refer to granular context, such as section type, or to more global context, such as unique document ids. Reliance on metadata for contextualized representation learning is apropos in the clinical domain where text is semi-structured and expresses high variation in topics. We evaluate the LMC model on the task of zero-shot clinical acronym expansion across three datasets. The LMC significantly outperforms a diverse set of baselines at a fraction of the pre-training cost and learns clinically coherent representations. We demonstrate that not only is metadata itself very helpful for the task, but that the LMC inference algorithm provides an additional large benefit.
ε-VAE: Denoising as Visual Decoding
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space. For high-dimensional visual data, it reduces redundancy and emphasizes key features for high-quality generation. Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input. In this work, we offer a new perspective by proposing denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder. We evaluate our approach by assessing both reconstruction (rFID) and generation quality (FID), comparing it to state-of-the-art autoencoding approach. We hope this work offers new insights into integrating iterative generation and autoencoding for improved compression and generation.
ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models
In this work, we propose a training-free method to inject visual prompts into Multimodal Large Language Models (MLLMs) through test-time optimization of a learnable latent variable. We observe that attention, as the core module of MLLMs, connects text prompt tokens and visual tokens, ultimately determining the final results. Our approach involves adjusting visual tokens from the MLP output at test time, controlling the attention response to ensure text prompt tokens attend to visual tokens in referring regions. We optimize a learnable latent variable based on an energy function, enhancing the strength of referring regions in the attention map. This enables detailed region description and reasoning without the need for substantial training costs or model retraining. Our method offers a promising direction for integrating referring abilities into MLLMs, and supports referring with box, mask, scribble and point. The results demonstrate that our method exhibits out-of-domain generalization and interpretability.
Zero-Shot Tokenizer Transfer
Language models (LMs) are bound to their tokenizer, which maps raw text to a sequence of vocabulary items (tokens). This restricts their flexibility: for example, LMs trained primarily on English may still perform well in other natural and programming languages, but have vastly decreased efficiency due to their English-centric tokenizer. To mitigate this, we should be able to swap the original LM tokenizer with an arbitrary one, on the fly, without degrading performance. Hence, in this work we define a new problem: Zero-Shot Tokenizer Transfer (ZeTT). The challenge at the core of ZeTT is finding embeddings for the tokens in the vocabulary of the new tokenizer. Since prior heuristics for initializing embeddings often perform at chance level in a ZeTT setting, we propose a new solution: we train a hypernetwork taking a tokenizer as input and predicting the corresponding embeddings. We empirically demonstrate that the hypernetwork generalizes to new tokenizers both with encoder (e.g., XLM-R) and decoder LLMs (e.g., Mistral-7B). Our method comes close to the original models' performance in cross-lingual and coding tasks while markedly reducing the length of the tokenized sequence. We also find that the remaining gap can be quickly closed by continued training on less than 1B tokens. Finally, we show that a ZeTT hypernetwork trained for a base (L)LM can also be applied to fine-tuned variants without extra training. Overall, our results make substantial strides toward detaching LMs from their tokenizer.
Aligning Visual Foundation Encoders to Tokenizers for Diffusion Models
In this work, we propose aligning pretrained visual encoders to serve as tokenizers for latent diffusion models in image generation. Unlike training a variational autoencoder (VAE) from scratch, which primarily emphasizes low-level details, our approach leverages the rich semantic structure of foundation encoders. We introduce a three-stage alignment strategy: (1) freeze the encoder and train an adapter and a decoder to establish a semantic latent space; (2) jointly optimize all components with an additional semantic preservation loss, enabling the encoder to capture perceptual details while retaining high-level semantics; and (3) refine the decoder for improved reconstruction quality. This alignment yields semantically rich image tokenizers that benefit diffusion models. On ImageNet 256times256, our tokenizer accelerates the convergence of diffusion models, reaching a gFID of 1.90 within just 64 epochs, and improves generation both with and without classifier-free guidance. Scaling to LAION, a 2B-parameter text-to-image model trained with our tokenizer consistently outperforms FLUX VAE under the same training steps. Overall, our method is simple, scalable, and establishes a semantically grounded paradigm for continuous tokenizer design.
Empowering Character-level Text Infilling by Eliminating Sub-Tokens
In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE.
Representation Deficiency in Masked Language Modeling
Masked Language Modeling (MLM) has been one of the most prominent approaches for pretraining bidirectional text encoders due to its simplicity and effectiveness. One notable concern about MLM is that the special [MASK] symbol causes a discrepancy between pretraining data and downstream data as it is present only in pretraining but not in fine-tuning. In this work, we offer a new perspective on the consequence of such a discrepancy: We demonstrate empirically and theoretically that MLM pretraining allocates some model dimensions exclusively for representing [MASK] tokens, resulting in a representation deficiency for real tokens and limiting the pretrained model's expressiveness when it is adapted to downstream data without [MASK] tokens. Motivated by the identified issue, we propose MAE-LM, which pretrains the Masked Autoencoder architecture with MLM where [MASK] tokens are excluded from the encoder. Empirically, we show that MAE-LM improves the utilization of model dimensions for real token representations, and MAE-LM consistently outperforms MLM-pretrained models across different pretraining settings and model sizes when fine-tuned on the GLUE and SQuAD benchmarks.
Can LLMs facilitate interpretation of pre-trained language models?
Work done to uncover the knowledge encoded within pre-trained language models rely on annotated corpora or human-in-the-loop methods. However, these approaches are limited in terms of scalability and the scope of interpretation. We propose using a large language model, ChatGPT, as an annotator to enable fine-grained interpretation analysis of pre-trained language models. We discover latent concepts within pre-trained language models by applying agglomerative hierarchical clustering over contextualized representations and then annotate these concepts using ChatGPT. Our findings demonstrate that ChatGPT produces accurate and semantically richer annotations compared to human-annotated concepts. Additionally, we showcase how GPT-based annotations empower interpretation analysis methodologies of which we demonstrate two: probing frameworks and neuron interpretation. To facilitate further exploration and experimentation in the field, we make available a substantial ConceptNet dataset (TCN) comprising 39,000 annotated concepts.
Tokenize Anything via Prompting
We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything. Unlike SAM, we aim to build a versatile region representation in the wild via visual prompting. To achieve this, we train a generalizable model with massive segmentation masks, e.g., SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters. Specifically, we construct a promptable image decoder by adding a semantic token to each mask token. The semantic token is responsible for learning the semantic priors in a predefined concept space. Through joint optimization of segmentation on mask tokens and concept prediction on semantic tokens, our model exhibits strong regional recognition and localization capabilities. For example, an additional 38M-parameter causal text decoder trained from scratch sets a new record with a CIDEr score of 150.7 on the Visual Genome region captioning task. We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context for a broad range of perception tasks. Code and models are available at https://github.com/baaivision/tokenize-anything.
LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior
We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).
Logits are All We Need to Adapt Closed Models
Many commercial Large Language Models (LLMs) are often closed-source, limiting developers to prompt tuning for aligning content generation with specific applications. While these models currently do not provide access to token logits, we argue that if such access were available, it would enable more powerful adaptation techniques beyond prompt engineering. In this paper, we propose a token-level probability reweighting framework that, given access to logits and a small amount of task-specific data, can effectively steer black-box LLMs toward application-specific content generation. Our approach views next-token prediction through the lens of supervised classification. We show that aligning black-box LLMs with task-specific data can be formulated as a label noise correction problem, leading to Plugin model -- an autoregressive probability reweighting model that operates solely on logits. We provide theoretical justification for why reweighting logits alone is sufficient for task adaptation. Extensive experiments with multiple datasets, LLMs, and reweighting models demonstrate the effectiveness of our method, advocating for broader access to token logits in closed-source models.
Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models' capability.
Beyond Masked and Unmasked: Discrete Diffusion Models via Partial Masking
Masked diffusion models (MDM) are powerful generative models for discrete data that generate samples by progressively unmasking tokens in a sequence. Each token can take one of two states: masked or unmasked. We observe that token sequences often remain unchanged between consecutive sampling steps; consequently, the model repeatedly processes identical inputs, leading to redundant computation. To address this inefficiency, we propose the Partial masking scheme (Prime), which augments MDM by allowing tokens to take intermediate states interpolated between the masked and unmasked states. This design enables the model to make predictions based on partially observed token information, and facilitates a fine-grained denoising process. We derive a variational training objective and introduce a simple architectural design to accommodate intermediate-state inputs. Our method demonstrates superior performance across a diverse set of generative modeling tasks. On text data, it achieves a perplexity of 15.36 on OpenWebText, outperforming previous MDM (21.52), autoregressive models (17.54), and their hybrid variants (17.58), without relying on an autoregressive formulation. On image data, it attains competitive FID scores of 3.26 on CIFAR-10 and 6.98 on ImageNet-32, comparable to leading continuous generative models.
Beyond English-Centric LLMs: What Language Do Multilingual Language Models Think in?
In this study, we investigate whether non-English-centric LLMs, despite their strong performance, `think' in their respective dominant language: more precisely, `think' refers to how the representations of intermediate layers, when un-embedded into the vocabulary space, exhibit higher probabilities for certain dominant languages during generation. We term such languages as internal latent languages. We examine the latent language of three typical categories of models for Japanese processing: Llama2, an English-centric model; Swallow, an English-centric model with continued pre-training in Japanese; and LLM-jp, a model pre-trained on balanced English and Japanese corpora. Our empirical findings reveal that, unlike Llama2 which relies exclusively on English as the internal latent language, Japanese-specific Swallow and LLM-jp employ both Japanese and English, exhibiting dual internal latent languages. For any given target language, the model preferentially activates the latent language most closely related to it. In addition, we explore how intermediate layers respond to questions involving cultural conflicts between latent internal and target output languages. We further explore how the language identity shifts across layers while keeping consistent semantic meaning reflected in the intermediate layer representations. This study deepens the understanding of non-English-centric large language models, highlighting the intricate dynamics of language representation within their intermediate layers.
ByteSpan: Information-Driven Subword Tokenisation
Recent dynamic tokenisation methods operate directly on bytes and pool their latent representations into patches. This bears similarities to computational models of word segmentation that determine lexical boundaries using spikes in an autoregressive model's prediction error. Inspired by this connection, we explore whether grouping predictable bytes - rather than pooling their representations - can yield a useful fixed subword vocabulary. We propose a new information-driven subword tokeniser, ByteSpan, that uses an external byte-level LM during training to identify contiguous predictable byte sequences and group them into subwords. Experiments show that ByteSpan yields efficient vocabularies with higher morphological alignment scores than BPE for English. Multilingual experiments show similar compression and R\'enyi efficiency for 25 languages.
Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation
Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
Token embeddings violate the manifold hypothesis
To fully understand the behavior of a large language model (LLM) requires our understanding of its input space. If this input space differs from our assumption, our understanding of and conclusions about the LLM is likely flawed, regardless of its architecture. Here, we elucidate the structure of the token embeddings, the input domain for LLMs, both empirically and theoretically. We present a generalized and statistically testable model where the neighborhood of each token splits into well-defined signal and noise dimensions. This model is based on a generalization of a manifold called a fiber bundle, so we denote our hypothesis test as the ``fiber bundle null.'' Failing to reject the null is uninformative, but rejecting it at a specific token indicates that token has a statistically significant local structure, and so is of interest to us. By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the token subspace is provably not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, and if one prompt contains a token implicated by our test, that prompt will likely exhibit more output variability proportional to the local signal dimension of the token.
