Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLUT Tensor Core: Lookup Table Enables Efficient Low-Bit LLM Inference Acceleration
As large language model (LLM) inference demands ever-greater resources, there is a rapid growing trend of using low-bit weights to shrink memory usage and boost inference efficiency. However, these low-bit LLMs introduce the need for mixed-precision matrix multiplication (mpGEMM), which is a crucial yet under-explored operation that involves multiplying lower-precision weights with higher-precision activations. Unfortunately, current hardware does not natively support mpGEMM, resulting in indirect and inefficient dequantization-based implementations. To address the mpGEMM requirements in low-bit LLMs, we explored the lookup table (LUT)-based approach for mpGEMM. However, a conventional LUT implementation falls short of its potential. To fully harness the power of LUT-based mpGEMM, we introduce LUT Tensor Core, a software-hardware co-design optimized for low-bit LLM inference. Specifically, we introduce software-based operator fusion and table symmetrization techniques to optimize table precompute and table storage, respectively. Then, LUT Tensor Core proposes the hardware design featuring an elongated tiling shape design to enhance table reuse and a bit-serial design to support various precision combinations in mpGEMM. Moreover, we design an end-to-end compilation stack with new instructions for LUT-based mpGEMM, enabling efficient LLM compilation and optimizations. The evaluation on low-bit LLMs (e.g., BitNet, LLAMA) shows that LUT Tensor Core achieves more than a magnitude of improvements on both compute density and energy efficiency.
DeepliteRT: Computer Vision at the Edge
The proliferation of edge devices has unlocked unprecedented opportunities for deep learning model deployment in computer vision applications. However, these complex models require considerable power, memory and compute resources that are typically not available on edge platforms. Ultra low-bit quantization presents an attractive solution to this problem by scaling down the model weights and activations from 32-bit to less than 8-bit. We implement highly optimized ultra low-bit convolution operators for ARM-based targets that outperform existing methods by up to 4.34x. Our operator is implemented within Deeplite Runtime (DeepliteRT), an end-to-end solution for the compilation, tuning, and inference of ultra low-bit models on ARM devices. Compiler passes in DeepliteRT automatically convert a fake-quantized model in full precision to a compact ultra low-bit representation, easing the process of quantized model deployment on commodity hardware. We analyze the performance of DeepliteRT on classification and detection models against optimized 32-bit floating-point, 8-bit integer, and 2-bit baselines, achieving significant speedups of up to 2.20x, 2.33x and 2.17x, respectively.
Efficient and Scalable Agentic AI with Heterogeneous Systems
AI agents are emerging as a dominant workload in a wide range of applications, promising to be the vehicle that delivers the promised benefits of AI to enterprises and consumers. Unlike conventional software or static inference, agentic workloads are dynamic and structurally complex. Often these agents are directed graphs of compute and IO operations that span multi-modal data input and conversion), data processing and context gathering (e.g vector DB lookups), multiple LLM inferences, tool calls, etc. To scale AI agent usage, we need efficient and scalable deployment and agent-serving infrastructure. To tackle this challenge, in this paper, we present a system design for dynamic orchestration of AI agent workloads on heterogeneous compute infrastructure spanning CPUs and accelerators, both from different vendors and across different performance tiers within a single vendor. The system delivers several building blocks: a framework for planning and optimizing agentic AI execution graphs using cost models that account for compute, memory, and bandwidth constraints of different HW; a MLIR based representation and compilation system that can decompose AI agent execution graphs into granular operators and generate code for different HW options; and a dynamic orchestration system that can place the granular components across a heterogeneous compute infrastructure and stitch them together while meeting an end-to-end SLA. Our design performs a systems level TCO optimization and preliminary results show that leveraging a heterogeneous infrastructure can deliver significant TCO benefits. A preliminary surprising finding is that for some workloads a heterogeneous combination of older generation GPUs with newer accelerators can deliver similar TCO as the latest generation homogenous GPU infrastructure design, potentially extending the life of deployed infrastructure.
Automating the Enterprise with Foundation Models
Automating enterprise workflows could unlock $4 trillion/year in productivity gains. Despite being of interest to the data management community for decades, the ultimate vision of end-to-end workflow automation has remained elusive. Current solutions rely on process mining and robotic process automation (RPA), in which a bot is hard-coded to follow a set of predefined rules for completing a workflow. Through case studies of a hospital and large B2B enterprise, we find that the adoption of RPA has been inhibited by high set-up costs (12-18 months), unreliable execution (60% initial accuracy), and burdensome maintenance (requiring multiple FTEs). Multimodal foundation models (FMs) such as GPT-4 offer a promising new approach for end-to-end workflow automation given their generalized reasoning and planning abilities. To study these capabilities we propose ECLAIR, a system to automate enterprise workflows with minimal human supervision. We conduct initial experiments showing that multimodal FMs can address the limitations of traditional RPA with (1) near-human-level understanding of workflows (93% accuracy on a workflow understanding task) and (2) instant set-up with minimal technical barrier (based solely on a natural language description of a workflow, ECLAIR achieves end-to-end completion rates of 40%). We identify human-AI collaboration, validation, and self-improvement as open challenges, and suggest ways they can be solved with data management techniques. Code is available at: https://github.com/HazyResearch/eclair-agents
Asynchronous LLM Function Calling
Large language models (LLMs) use function calls to interface with external tools and data source. However, the current approach to LLM function calling is inherently synchronous, where each call blocks LLM inference, limiting LLM operation and concurrent function execution. In this work, we propose AsyncLM, a system for asynchronous LLM function calling. AsyncLM improves LLM's operational efficiency by enabling LLMs to generate and execute function calls concurrently. Instead of waiting for each call's completion, AsyncLM introduces an interrupt mechanism to asynchronously notify the LLM in-flight when function calls return. We design an in-context protocol for function calls and interrupts, provide fine-tuning strategy to adapt LLMs to the interrupt semantics, and implement these mechanisms efficiently on LLM inference process. We demonstrate that AsyncLM can reduce end-to-end task completion latency from 1.6x-5.4x compared to synchronous function calling on a set of benchmark tasks in the Berkeley function calling leaderboard (BFCL). Furthermore, we discuss how interrupt mechanisms can be extended to enable novel human-LLM or LLM-LLM interactions.
A Hybrid Task-Oriented Dialog System with Domain and Task Adaptive Pretraining
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is evaluated by human evaluation and a user simulator based automatic evaluation. Different from traditional pipelined approaches where modules are optimized individually and suffer from cascading failure, we propose an end-to-end dialog system that 1) uses Generative Pretraining 2 (GPT-2) as the backbone to jointly solve Natural Language Understanding, Dialog State Tracking, and Natural Language Generation tasks, 2) adopts Domain and Task Adaptive Pretraining to tailor GPT-2 to the dialog domain before finetuning, 3) utilizes heuristic pre/post-processing rules that greatly simplify the prediction tasks and improve generalizability, and 4) equips a fault tolerance module to correct errors and inappropriate responses. Our proposed method significantly outperforms baselines and ties for first place in the official evaluation. We make our source code publicly available.
EEG Emotion Copilot: Optimizing Lightweight LLMs for Emotional EEG Interpretation with Assisted Medical Record Generation
In the fields of affective computing (AC) and brain-machine interface (BMI), the analysis of physiological and behavioral signals to discern individual emotional states has emerged as a critical research frontier. While deep learning-based approaches have made notable strides in EEG emotion recognition, particularly in feature extraction and pattern recognition, significant challenges persist in achieving end-to-end emotion computation, including real-time processing, individual adaptation, and seamless user interaction. This paper presents the EEG Emotion Copilot, a system optimizing a lightweight large language model (LLM) with 0.5B parameters operating in a local setting, which first recognizes emotional states directly from EEG signals, subsequently generates personalized diagnostic and treatment suggestions, and finally supports the automation of assisted electronic medical records. Specifically, we demonstrate the critical techniques in the novel data structure of prompt, model pruning and fine-tuning training, and deployment strategies aiming at improving real-time performance and computational efficiency. Extensive experiments show that our optimized lightweight LLM-based copilot achieves an enhanced intuitive interface for participant interaction, superior accuracy of emotion recognition and assisted electronic medical records generation, in comparison to such models with similar scale parameters or large-scale parameters such as 1.5B, 1.8B, 3B and 7B. In summary, through these efforts, the proposed copilot is expected to advance the application of AC in the medical domain, offering innovative solution to mental health monitoring. The codes will be released at https://github.com/NZWANG/EEG_Emotion_Copilot.
Disambiguation-Centric Finetuning Makes Enterprise Tool-Calling LLMs More Realistic and Less Risky
Large language models (LLMs) are increasingly tasked with invoking enterprise APIs, yet they routinely falter when near-duplicate tools vie for the same user intent or when required arguments are left underspecified. We introduce DiaFORGE (Dialogue Framework for Organic Response Generation & Evaluation), a disambiguation-centric, three-stage pipeline that (i) synthesizes persona-driven, multi-turn dialogues in which the assistant must distinguish among highly similar tools, (ii) performs supervised fine-tuning of open-source models with reasoning traces across 3B - 70B parameters, and (iii) evaluates real-world readiness via a dynamic suite that redeploys each model in a live agentic loop and reports end-to-end goal completion alongside conventional static metrics. On our dynamic benchmark DiaBENCH, models trained with DiaFORGE raise tool-invocation success by 27 pp over GPT-4o and by 49 pp over Claude-3.5-Sonnet, both under optimized prompting. To spur further research, we release an open corpus of 5000 production-grade enterprise API specifications paired with rigorously validated, disambiguation-focused dialogues, offering a practical blueprint for building reliable, enterprise-ready tool-calling agents.
DINO-Tracker: Taming DINO for Self-Supervised Point Tracking in a Single Video
We present DINO-Tracker -- a new framework for long-term dense tracking in video. The pillar of our approach is combining test-time training on a single video, with the powerful localized semantic features learned by a pre-trained DINO-ViT model. Specifically, our framework simultaneously adopts DINO's features to fit to the motion observations of the test video, while training a tracker that directly leverages the refined features. The entire framework is trained end-to-end using a combination of self-supervised losses, and regularization that allows us to retain and benefit from DINO's semantic prior. Extensive evaluation demonstrates that our method achieves state-of-the-art results on known benchmarks. DINO-tracker significantly outperforms self-supervised methods and is competitive with state-of-the-art supervised trackers, while outperforming them in challenging cases of tracking under long-term occlusions.
Learning Adaptive Parallel Reasoning with Language Models
Scaling inference-time computation has substantially improved the reasoning capabilities of language models. However, existing methods have significant limitations: serialized chain-of-thought approaches generate overly long outputs, leading to increased latency and exhausted context windows, while parallel methods such as self-consistency suffer from insufficient coordination, resulting in redundant computations and limited performance gains. To address these shortcomings, we propose Adaptive Parallel Reasoning (APR), a novel reasoning framework that enables language models to orchestrate both serialized and parallel computations end-to-end. APR generalizes existing reasoning methods by enabling adaptive multi-threaded inference using spawn() and join() operations. A key innovation is our end-to-end reinforcement learning strategy, optimizing both parent and child inference threads to enhance task success rate without requiring predefined reasoning structures. Experiments on the Countdown reasoning task demonstrate significant benefits of APR: (1) higher performance within the same context window (83.4% vs. 60.0% at 4k context); (2) superior scalability with increased computation (80.1% vs. 66.6% at 20k total tokens); (3) improved accuracy at equivalent latency (75.2% vs. 57.3% at approximately 5,000ms). APR represents a step towards enabling language models to autonomously optimize their reasoning processes through adaptive allocation of computation.
Text Fact Transfer
Text style transfer is a prominent task that aims to control the style of text without inherently changing its factual content. To cover more text modification applications, such as adapting past news for current events and repurposing educational materials, we propose the task of text fact transfer, which seeks to transfer the factual content of a source text between topics without modifying its style. We find that existing language models struggle with text fact transfer, due to their inability to preserve the specificity and phrasing of the source text, and tendency to hallucinate errors. To address these issues, we design ModQGA, a framework that minimally modifies a source text with a novel combination of end-to-end question generation and specificity-aware question answering. Through experiments on four existing datasets adapted for text fact transfer, we show that ModQGA can accurately transfer factual content without sacrificing the style of the source text.
SpecInfer: Accelerating Generative LLM Serving with Speculative Inference and Token Tree Verification
The high computational and memory requirements of generative large language models (LLMs) make it challenging to serve them quickly and cheaply. This paper introduces SpecInfer, an LLM serving system that accelerates generative LLM inference with speculative inference and token tree verification. A key insight behind SpecInfer is to combine various collectively boost-tuned small language models to jointly predict the LLM's outputs; the predictions are organized as a token tree, whose nodes each represent a candidate token sequence. The correctness of all candidate token sequences represented by a token tree is verified by the LLM in parallel using a novel tree-based parallel decoding mechanism. SpecInfer uses an LLM as a token tree verifier instead of an incremental decoder, which significantly reduces the end-to-end latency and computational requirement for serving generative LLMs while provably preserving model quality.
Revisiting End-to-End Learning with Slide-level Supervision in Computational Pathology
Pre-trained encoders for offline feature extraction followed by multiple instance learning (MIL) aggregators have become the dominant paradigm in computational pathology (CPath), benefiting cancer diagnosis and prognosis. However, performance limitations arise from the absence of encoder fine-tuning for downstream tasks and disjoint optimization with MIL. While slide-level supervised end-to-end (E2E) learning is an intuitive solution to this issue, it faces challenges such as high computational demands and suboptimal results. These limitations motivate us to revisit E2E learning. We argue that prior work neglects inherent E2E optimization challenges, leading to performance disparities compared to traditional two-stage methods. In this paper, we pioneer the elucidation of optimization challenge caused by sparse-attention MIL and propose a novel MIL called ABMILX. It mitigates this problem through global correlation-based attention refinement and multi-head mechanisms. With the efficient multi-scale random patch sampling strategy, an E2E trained ResNet with ABMILX surpasses SOTA foundation models under the two-stage paradigm across multiple challenging benchmarks, while remaining computationally efficient (<10 RTX3090 hours). We show the potential of E2E learning in CPath and calls for greater research focus in this area. The code is https://github.com/DearCaat/E2E-WSI-ABMILX.
End-to-end Differentiable Clustering with Associative Memories
Clustering is a widely used unsupervised learning technique involving an intensive discrete optimization problem. Associative Memory models or AMs are differentiable neural networks defining a recursive dynamical system, which have been integrated with various deep learning architectures. We uncover a novel connection between the AM dynamics and the inherent discrete assignment necessary in clustering to propose a novel unconstrained continuous relaxation of the discrete clustering problem, enabling end-to-end differentiable clustering with AM, dubbed ClAM. Leveraging the pattern completion ability of AMs, we further develop a novel self-supervised clustering loss. Our evaluations on varied datasets demonstrate that ClAM benefits from the self-supervision, and significantly improves upon both the traditional Lloyd's k-means algorithm, and more recent continuous clustering relaxations (by upto 60% in terms of the Silhouette Coefficient).
End-to-end speaker segmentation for overlap-aware resegmentation
Speaker segmentation consists in partitioning a conversation between one or more speakers into speaker turns. Usually addressed as the late combination of three sub-tasks (voice activity detection, speaker change detection, and overlapped speech detection), we propose to train an end-to-end segmentation model that does it directly. Inspired by the original end-to-end neural speaker diarization approach (EEND), the task is modeled as a multi-label classification problem using permutation-invariant training. The main difference is that our model operates on short audio chunks (5 seconds) but at a much higher temporal resolution (every 16ms). Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection. Our proposed model can also be used as a post-processing step, to detect and correctly assign overlapped speech regions. Relative diarization error rate improvement over the best considered baseline (VBx) reaches 17% on AMI, 13% on DIHARD 3, and 13% on VoxConverse.
End-to-end Audio-visual Speech Recognition with Conformers
In this work, we present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer (Conformer), that can be trained in an end-to-end manner. In particular, the audio and visual encoders learn to extract features directly from raw pixels and audio waveforms, respectively, which are then fed to conformers and then fusion takes place via a Multi-Layer Perceptron (MLP). The model learns to recognise characters using a combination of CTC and an attention mechanism. We show that end-to-end training, instead of using pre-computed visual features which is common in the literature, the use of a conformer, instead of a recurrent network, and the use of a transformer-based language model, significantly improve the performance of our model. We present results on the largest publicly available datasets for sentence-level speech recognition, Lip Reading Sentences 2 (LRS2) and Lip Reading Sentences 3 (LRS3), respectively. The results show that our proposed models raise the state-of-the-art performance by a large margin in audio-only, visual-only, and audio-visual experiments.
VIOLET : End-to-End Video-Language Transformers with Masked Visual-token Modeling
A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data. Recent studies try to mitigate this disconnection via end-to-end training. To make it computationally feasible, prior works tend to "imagify" video inputs, i.e., a handful of sparsely sampled frames are fed into a 2D CNN, followed by a simple mean-pooling or concatenation to obtain the overall video representations. Although achieving promising results, such simple approaches may lose temporal information that is essential for performing downstream VidL tasks. In this work, we present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs. Further, unlike previous studies that found pre-training tasks on video inputs (e.g., masked frame modeling) not very effective, we design a new pre-training task, Masked Visual-token Modeling (MVM), for better video modeling. Specifically, the original video frame patches are "tokenized" into discrete visual tokens, and the goal is to recover the original visual tokens based on the masked patches. Comprehensive analysis demonstrates the effectiveness of both explicit temporal modeling via video transformer and MVM. As a result, VIOLET achieves new state-of-the-art performance on 5 video question answering tasks and 4 text-to-video retrieval tasks.
End-to-End On-Device Quantization-Aware Training for LLMs at Inference Cost
Quantization is an effective technique to reduce the deployment cost of large language models (LLMs), and post-training quantization (PTQ) has been widely studied due to its efficiency. However, existing PTQ methods are limited by their inability to fine-tune model parameters and often suffer significant accuracy loss in low-bit scenarios. Quantization-aware training (QAT) provides a more principled solution, but its reliance on backpropagation incurs prohibitive memory costs, limiting its practicality for LLM deployment. To address these challenges, we propose ZeroQAT, a zeroth-order optimization-based QAT framework that supports both weight and activation quantization. ZeroQAT leverages forward-only gradient estimation to eliminate backpropagation, substantially reducing computational and memory overhead while retaining the benefits of end-to-end optimization. We further introduce a lightweight variant of ZeroQAT for quantized fine-tuning, which freezes and pre-quantizes most parameters to further cut memory usage. Experiments show that ZeroQAT consistently outperforms representative PTQ and QAT baselines while requiring significantly less memory. For example, ZeroQAT enables fine-tuning of a 13B model at extremely low bit-widths (e.g., 2-4 bits) on a single 8GB GPU, and even allows fine-tuning a 6.7B model on a OnePlus 12 smartphone, demonstrating its practicality for end-to-end QAT on resource-limited edge devices.
End-To-End Memory Networks
We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.
ETC-NLG: End-to-end Topic-Conditioned Natural Language Generation
Plug-and-play language models (PPLMs) enable topic-conditioned natural language generation by pairing large pre-trained generators with attribute models used to steer the predicted token distribution towards the selected topic. Despite their computational efficiency, PPLMs require large amounts of labeled texts to effectively balance generation fluency and proper conditioning, making them unsuitable for low-resource settings. We present ETC-NLG, an approach leveraging topic modeling annotations to enable fully-unsupervised End-to-end Topic-Conditioned Natural Language Generation over emergent topics in unlabeled document collections. We first test the effectiveness of our approach in a low-resource setting for Italian, evaluating the conditioning for both topic models and gold annotations. We then perform a comparative evaluation of ETC-NLG for Italian and English using a parallel corpus. Finally, we propose an automatic approach to estimate the effectiveness of conditioning on the generated utterances.
Towards End-to-End Lane Detection: an Instance Segmentation Approach
Modern cars are incorporating an increasing number of driver assist features, among which automatic lane keeping. The latter allows the car to properly position itself within the road lanes, which is also crucial for any subsequent lane departure or trajectory planning decision in fully autonomous cars. Traditional lane detection methods rely on a combination of highly-specialized, hand-crafted features and heuristics, usually followed by post-processing techniques, that are computationally expensive and prone to scalability due to road scene variations. More recent approaches leverage deep learning models, trained for pixel-wise lane segmentation, even when no markings are present in the image due to their big receptive field. Despite their advantages, these methods are limited to detecting a pre-defined, fixed number of lanes, e.g. ego-lanes, and can not cope with lane changes. In this paper, we go beyond the aforementioned limitations and propose to cast the lane detection problem as an instance segmentation problem - in which each lane forms its own instance - that can be trained end-to-end. To parametrize the segmented lane instances before fitting the lane, we further propose to apply a learned perspective transformation, conditioned on the image, in contrast to a fixed "bird's-eye view" transformation. By doing so, we ensure a lane fitting which is robust against road plane changes, unlike existing approaches that rely on a fixed, pre-defined transformation. In summary, we propose a fast lane detection algorithm, running at 50 fps, which can handle a variable number of lanes and cope with lane changes. We verify our method on the tuSimple dataset and achieve competitive results.
End-to-End Diffusion Latent Optimization Improves Classifier Guidance
Classifier guidance -- using the gradients of an image classifier to steer the generations of a diffusion model -- has the potential to dramatically expand the creative control over image generation and editing. However, currently classifier guidance requires either training new noise-aware models to obtain accurate gradients or using a one-step denoising approximation of the final generation, which leads to misaligned gradients and sub-optimal control. We highlight this approximation's shortcomings and propose a novel guidance method: Direct Optimization of Diffusion Latents (DOODL), which enables plug-and-play guidance by optimizing diffusion latents w.r.t. the gradients of a pre-trained classifier on the true generated pixels, using an invertible diffusion process to achieve memory-efficient backpropagation. Showcasing the potential of more precise guidance, DOODL outperforms one-step classifier guidance on computational and human evaluation metrics across different forms of guidance: using CLIP guidance to improve generations of complex prompts from DrawBench, using fine-grained visual classifiers to expand the vocabulary of Stable Diffusion, enabling image-conditioned generation with a CLIP visual encoder, and improving image aesthetics using an aesthetic scoring network. Code at https://github.com/salesforce/DOODL.
End-to-end Autonomous Driving with Semantic Depth Cloud Mapping and Multi-agent
Focusing on the task of point-to-point navigation for an autonomous driving vehicle, we propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously. The model is used to drive the ego vehicle safely by following a sequence of routes defined by the global planner. The perception part of the model is used to encode high-dimensional observation data provided by an RGBD camera while performing semantic segmentation, semantic depth cloud (SDC) mapping, and traffic light state and stop sign prediction. Then, the control part decodes the encoded features along with additional information provided by GPS and speedometer to predict waypoints that come with a latent feature space. Furthermore, two agents are employed to process these outputs and make a control policy that determines the level of steering, throttle, and brake as the final action. The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions. In addition, we do a comparative study with some recent models to justify the performance in multiple aspects of driving. Moreover, we also conduct an ablation study on SDC mapping and multi-agent to understand their roles and behavior. As a result, our model achieves the highest driving score even with fewer parameters and computation load. To support future studies, we share our codes at https://github.com/oskarnatan/end-to-end-driving.
End-to-end Lane Shape Prediction with Transformers
Lane detection, the process of identifying lane markings as approximated curves, is widely used for lane departure warning and adaptive cruise control in autonomous vehicles. The popular pipeline that solves it in two steps -- feature extraction plus post-processing, while useful, is too inefficient and flawed in learning the global context and lanes' long and thin structures. To tackle these issues, we propose an end-to-end method that directly outputs parameters of a lane shape model, using a network built with a transformer to learn richer structures and context. The lane shape model is formulated based on road structures and camera pose, providing physical interpretation for parameters of network output. The transformer models non-local interactions with a self-attention mechanism to capture slender structures and global context. The proposed method is validated on the TuSimple benchmark and shows state-of-the-art accuracy with the most lightweight model size and fastest speed. Additionally, our method shows excellent adaptability to a challenging self-collected lane detection dataset, showing its powerful deployment potential in real applications. Codes are available at https://github.com/liuruijin17/LSTR.
Towards End-to-end 4-Bit Inference on Generative Large Language Models
We show that the majority of the inference computations for large generative models such as LLaMA and OPT can be performed with both weights and activations being cast to 4 bits, in a way that leads to practical speedups while at the same time maintaining good accuracy. We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit, while keeping some outlier weights and activations in higher-precision. Crucially, our scheme is designed with computational efficiency in mind: we provide GPU kernels with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.1x relative to FP16 execution. Code and models are provided at https://github.com/IST-DASLab/QUIK.
VMFormer: End-to-End Video Matting with Transformer
Video matting aims to predict the alpha mattes for each frame from a given input video sequence. Recent solutions to video matting have been dominated by deep convolutional neural networks (CNN) for the past few years, which have become the de-facto standard for both academia and industry. However, they have inbuilt inductive bias of locality and do not capture global characteristics of an image due to the CNN-based architectures. They also lack long-range temporal modeling considering computational costs when dealing with feature maps of multiple frames. In this paper, we propose VMFormer: a transformer-based end-to-end method for video matting. It makes predictions on alpha mattes of each frame from learnable queries given a video input sequence. Specifically, it leverages self-attention layers to build global integration of feature sequences with short-range temporal modeling on successive frames. We further apply queries to learn global representations through cross-attention in the transformer decoder with long-range temporal modeling upon all queries. In the prediction stage, both queries and corresponding feature maps are used to make the final prediction of alpha matte. Experiments show that VMFormer outperforms previous CNN-based video matting methods on the composited benchmarks. To our best knowledge, it is the first end-to-end video matting solution built upon a full vision transformer with predictions on the learnable queries. The project is open-sourced at https://chrisjuniorli.github.io/project/VMFormer/
Towards An End-to-End Framework for Flow-Guided Video Inpainting
Optical flow, which captures motion information across frames, is exploited in recent video inpainting methods through propagating pixels along its trajectories. However, the hand-crafted flow-based processes in these methods are applied separately to form the whole inpainting pipeline. Thus, these methods are less efficient and rely heavily on the intermediate results from earlier stages. In this paper, we propose an End-to-End framework for Flow-Guided Video Inpainting (E^2FGVI) through elaborately designed three trainable modules, namely, flow completion, feature propagation, and content hallucination modules. The three modules correspond with the three stages of previous flow-based methods but can be jointly optimized, leading to a more efficient and effective inpainting process. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively and shows promising efficiency. The code is available at https://github.com/MCG-NKU/E2FGVI.
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition
Recent works have shown that the computational efficiency of video recognition can be significantly improved by reducing the spatial redundancy. As a representative work, the adaptive focus method (AdaFocus) has achieved a favorable trade-off between accuracy and inference speed by dynamically identifying and attending to the informative regions in each video frame. However, AdaFocus requires a complicated three-stage training pipeline (involving reinforcement learning), leading to slow convergence and is unfriendly to practitioners. This work reformulates the training of AdaFocus as a simple one-stage algorithm by introducing a differentiable interpolation-based patch selection operation, enabling efficient end-to-end optimization. We further present an improved training scheme to address the issues introduced by the one-stage formulation, including the lack of supervision, input diversity and training stability. Moreover, a conditional-exit technique is proposed to perform temporal adaptive computation on top of AdaFocus without additional training. Extensive experiments on six benchmark datasets (i.e., ActivityNet, FCVID, Mini-Kinetics, Something-Something V1&V2, and Jester) demonstrate that our model significantly outperforms the original AdaFocus and other competitive baselines, while being considerably more simple and efficient to train. Code is available at https://github.com/LeapLabTHU/AdaFocusV2.
End-to-End Neural Network Compression via $\frac{\ell_1}{\ell_2}$ Regularized Latency Surrogates
Neural network (NN) compression via techniques such as pruning, quantization requires setting compression hyperparameters (e.g., number of channels to be pruned, bitwidths for quantization) for each layer either manually or via neural architecture search (NAS) which can be computationally expensive. We address this problem by providing an end-to-end technique that optimizes for model's Floating Point Operations (FLOPs) or for on-device latency via a novel ell_1{ell_2} latency surrogate. Our algorithm is versatile and can be used with many popular compression methods including pruning, low-rank factorization, and quantization. Crucially, it is fast and runs in almost the same amount of time as single model training; which is a significant training speed-up over standard NAS methods. For BERT compression on GLUE fine-tuning tasks, we achieve 50% reduction in FLOPs with only 1% drop in performance. For compressing MobileNetV3 on ImageNet-1K, we achieve 15% reduction in FLOPs, and 11% reduction in on-device latency without drop in accuracy, while still requiring 3times less training compute than SOTA compression techniques. Finally, for transfer learning on smaller datasets, our technique identifies 1.2times-1.4times cheaper architectures than standard MobileNetV3, EfficientNet suite of architectures at almost the same training cost and accuracy.
SpeechNet: Weakly Supervised, End-to-End Speech Recognition at Industrial Scale
End-to-end automatic speech recognition systems represent the state of the art, but they rely on thousands of hours of manually annotated speech for training, as well as heavyweight computation for inference. Of course, this impedes commercialization since most companies lack vast human and computational resources. In this paper, we explore training and deploying an ASR system in the label-scarce, compute-limited setting. To reduce human labor, we use a third-party ASR system as a weak supervision source, supplemented with labeling functions derived from implicit user feedback. To accelerate inference, we propose to route production-time queries across a pool of CUDA graphs of varying input lengths, the distribution of which best matches the traffic's. Compared to our third-party ASR, we achieve a relative improvement in word-error rate of 8% and a speedup of 600%. Our system, called SpeechNet, currently serves 12 million queries per day on our voice-enabled smart television. To our knowledge, this is the first time a large-scale, Wav2vec-based deployment has been described in the academic literature.
End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF
State-of-the-art sequence labeling systems traditionally require large amounts of task-specific knowledge in the form of hand-crafted features and data pre-processing. In this paper, we introduce a novel neutral network architecture that benefits from both word- and character-level representations automatically, by using combination of bidirectional LSTM, CNN and CRF. Our system is truly end-to-end, requiring no feature engineering or data pre-processing, thus making it applicable to a wide range of sequence labeling tasks. We evaluate our system on two data sets for two sequence labeling tasks --- Penn Treebank WSJ corpus for part-of-speech (POS) tagging and CoNLL 2003 corpus for named entity recognition (NER). We obtain state-of-the-art performance on both the two data --- 97.55\% accuracy for POS tagging and 91.21\% F1 for NER.
AclNet: efficient end-to-end audio classification CNN
We propose an efficient end-to-end convolutional neural network architecture, AclNet, for audio classification. When trained with our data augmentation and regularization, we achieved state-of-the-art performance on the ESC-50 corpus with 85:65% accuracy. Our network allows configurations such that memory and compute requirements are drastically reduced, and a tradeoff analysis of accuracy and complexity is presented. The analysis shows high accuracy at significantly reduced computational complexity compared to existing solutions. For example, a configuration with only 155k parameters and 49:3 million multiply-adds per second is 81:75%, exceeding human accuracy of 81:3%. This improved efficiency can enable always-on inference in energy-efficient platforms.
Foam-Agent 2.0: An End-to-End Composable Multi-Agent Framework for Automating CFD Simulation in OpenFOAM
Computational Fluid Dynamics (CFD) is an essential simulation tool in engineering, yet its steep learning curve and complex manual setup create significant barriers. To address these challenges, we introduce Foam-Agent, a multi-agent framework that automates the entire end-to-end OpenFOAM workflow from a single natural language prompt. Our key innovations address critical gaps in existing systems: 1. An Comprehensive End-to-End Simulation Automation: Foam-Agent is the first system to manage the full simulation pipeline, including advanced pre-processing with a versatile Meshing Agent capable of handling external mesh files and generating new geometries via Gmsh, automatic generation of HPC submission scripts, and post-simulation visualization via ParaView. 2. Composable Service Architecture: Going beyond a monolithic agent, the framework uses Model Context Protocol (MCP) to expose its core functions as discrete, callable tools. This allows for flexible integration and use by other agentic systems, such as Claude-code, for more exploratory workflows. 3. High-Fidelity Configuration Generation: We achieve superior accuracy through a Hierarchical Multi-Index RAG for precise context retrieval and a dependency-aware generation process that ensures configuration consistency. Evaluated on a benchmark of 110 simulation tasks, Foam-Agent achieves an 88.2% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM). Foam-Agent dramatically lowers the expertise barrier for CFD, demonstrating how specialized multi-agent systems can democratize complex scientific computing. The code is public at https://github.com/csml-rpi/Foam-Agent.
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
Current deep video quality assessment (VQA) methods are usually with high computational costs when evaluating high-resolution videos. This cost hinders them from learning better video-quality-related representations via end-to-end training. Existing approaches typically consider naive sampling to reduce the computational cost, such as resizing and cropping. However, they obviously corrupt quality-related information in videos and are thus not optimal for learning good representations for VQA. Therefore, there is an eager need to design a new quality-retained sampling scheme for VQA. In this paper, we propose Grid Mini-patch Sampling (GMS), which allows consideration of local quality by sampling patches at their raw resolution and covers global quality with contextual relations via mini-patches sampled in uniform grids. These mini-patches are spliced and aligned temporally, named as fragments. We further build the Fragment Attention Network (FANet) specially designed to accommodate fragments as inputs. Consisting of fragments and FANet, the proposed FrAgment Sample Transformer for VQA (FAST-VQA) enables efficient end-to-end deep VQA and learns effective video-quality-related representations. It improves state-of-the-art accuracy by around 10% while reducing 99.5% FLOPs on 1080P high-resolution videos. The newly learned video-quality-related representations can also be transferred into smaller VQA datasets, boosting performance in these scenarios. Extensive experiments show that FAST-VQA has good performance on inputs of various resolutions while retaining high efficiency. We publish our code at https://github.com/timothyhtimothy/FAST-VQA.
PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination
Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.
Adaptive End-to-End Metric Learning for Zero-Shot Cross-Domain Slot Filling
Recently slot filling has witnessed great development thanks to deep learning and the availability of large-scale annotated data. However, it poses a critical challenge to handle a novel domain whose samples are never seen during training. The recognition performance might be greatly degraded due to severe domain shifts. Most prior works deal with this problem in a two-pass pipeline manner based on metric learning. In practice, these dominant pipeline models may be limited in computational efficiency and generalization capacity because of non-parallel inference and context-free discrete label embeddings. To this end, we re-examine the typical metric-based methods, and propose a new adaptive end-to-end metric learning scheme for the challenging zero-shot slot filling. Considering simplicity, efficiency and generalizability, we present a cascade-style joint learning framework coupled with context-aware soft label representations and slot-level contrastive representation learning to mitigate the data and label shift problems effectively. Extensive experiments on public benchmarks demonstrate the superiority of the proposed approach over a series of competitive baselines.
RecursiveDet: End-to-End Region-based Recursive Object Detection
End-to-end region-based object detectors like Sparse R-CNN usually have multiple cascade bounding box decoding stages, which refine the current predictions according to their previous results. Model parameters within each stage are independent, evolving a huge cost. In this paper, we find the general setting of decoding stages is actually redundant. By simply sharing parameters and making a recursive decoder, the detector already obtains a significant improvement. The recursive decoder can be further enhanced by positional encoding (PE) of the proposal box, which makes it aware of the exact locations and sizes of input bounding boxes, thus becoming adaptive to proposals from different stages during the recursion. Moreover, we also design centerness-based PE to distinguish the RoI feature element and dynamic convolution kernels at different positions within the bounding box. To validate the effectiveness of the proposed method, we conduct intensive ablations and build the full model on three recent mainstream region-based detectors. The RecusiveDet is able to achieve obvious performance boosts with even fewer model parameters and slightly increased computation cost. Codes are available at https://github.com/bravezzzzzz/RecursiveDet.
RoomNet: End-to-End Room Layout Estimation
This paper focuses on the task of room layout estimation from a monocular RGB image. Prior works break the problem into two sub-tasks: semantic segmentation of floor, walls, ceiling to produce layout hypotheses, followed by an iterative optimization step to rank these hypotheses. In contrast, we adopt a more direct formulation of this problem as one of estimating an ordered set of room layout keypoints. The room layout and the corresponding segmentation is completely specified given the locations of these ordered keypoints. We predict the locations of the room layout keypoints using RoomNet, an end-to-end trainable encoder-decoder network. On the challenging benchmark datasets Hedau and LSUN, we achieve state-of-the-art performance along with 200x to 600x speedup compared to the most recent work. Additionally, we present optional extensions to the RoomNet architecture such as including recurrent computations and memory units to refine the keypoint locations under the same parametric capacity.
STARFlow-V: End-to-End Video Generative Modeling with Normalizing Flow
Normalizing flows (NFs) are end-to-end likelihood-based generative models for continuous data, and have recently regained attention with encouraging progress on image generation. Yet in the video generation domain, where spatiotemporal complexity and computational cost are substantially higher, state-of-the-art systems almost exclusively rely on diffusion-based models. In this work, we revisit this design space by presenting STARFlow-V, a normalizing flow-based video generator with substantial benefits such as end-to-end learning, robust causal prediction, and native likelihood estimation. Building upon the recently proposed STARFlow, STARFlow-V operates in the spatiotemporal latent space with a global-local architecture which restricts causal dependencies to a global latent space while preserving rich local within-frame interactions. This eases error accumulation over time, a common pitfall of standard autoregressive diffusion model generation. Additionally, we propose flow-score matching, which equips the model with a light-weight causal denoiser to improve the video generation consistency in an autoregressive fashion. To improve the sampling efficiency, STARFlow-V employs a video-aware Jacobi iteration scheme that recasts inner updates as parallelizable iterations without breaking causality. Thanks to the invertible structure, the same model can natively support text-to-video, image-to-video as well as video-to-video generation tasks. Empirically, STARFlow-V achieves strong visual fidelity and temporal consistency with practical sampling throughput relative to diffusion-based baselines. These results present the first evidence, to our knowledge, that NFs are capable of high-quality autoregressive video generation, establishing them as a promising research direction for building world models. Code and generated samples are available at https://github.com/apple/ml-starflow.
Distilling an End-to-End Voice Assistant Without Instruction Training Data
Voice assistants, such as Siri and Google Assistant, typically model audio and text separately, resulting in lost speech information and increased complexity. Recent efforts to address this with end-to-end Speech Large Language Models (LLMs) trained with supervised finetuning (SFT) have led to models ``forgetting" capabilities from text-only LLMs. Our work proposes an alternative paradigm for training Speech LLMs without instruction data, using the response of a text-only LLM to transcripts as self-supervision. Importantly, this process can be performed without annotated responses. We show that our Distilled Voice Assistant (DiVA) generalizes to Spoken Question Answering, Classification, and Translation. Furthermore, we show that DiVA better meets user preferences, achieving a 72\% win rate compared with state-of-the-art models like Qwen 2 Audio, despite using >100x less training compute.
PRIX: Learning to Plan from Raw Pixels for End-to-End Autonomous Driving
While end-to-end autonomous driving models show promising results, their practical deployment is often hindered by large model sizes, a reliance on expensive LiDAR sensors and computationally intensive BEV feature representations. This limits their scalability, especially for mass-market vehicles equipped only with cameras. To address these challenges, we propose PRIX (Plan from Raw Pixels). Our novel and efficient end-to-end driving architecture operates using only camera data, without explicit BEV representation and forgoing the need for LiDAR. PRIX leverages a visual feature extractor coupled with a generative planning head to predict safe trajectories from raw pixel inputs directly. A core component of our architecture is the Context-aware Recalibration Transformer (CaRT), a novel module designed to effectively enhance multi-level visual features for more robust planning. We demonstrate through comprehensive experiments that PRIX achieves state-of-the-art performance on the NavSim and nuScenes benchmarks, matching the capabilities of larger, multimodal diffusion planners while being significantly more efficient in terms of inference speed and model size, making it a practical solution for real-world deployment. Our work is open-source and the code will be at https://maxiuw.github.io/prix.
EMMA: End-to-End Multimodal Model for Autonomous Driving
We introduce EMMA, an End-to-end Multimodal Model for Autonomous driving. Built on a multi-modal large language model foundation, EMMA directly maps raw camera sensor data into various driving-specific outputs, including planner trajectories, perception objects, and road graph elements. EMMA maximizes the utility of world knowledge from the pre-trained large language models, by representing all non-sensor inputs (e.g. navigation instructions and ego vehicle status) and outputs (e.g. trajectories and 3D locations) as natural language text. This approach allows EMMA to jointly process various driving tasks in a unified language space, and generate the outputs for each task using task-specific prompts. Empirically, we demonstrate EMMA's effectiveness by achieving state-of-the-art performance in motion planning on nuScenes as well as competitive results on the Waymo Open Motion Dataset (WOMD). EMMA also yields competitive results for camera-primary 3D object detection on the Waymo Open Dataset (WOD). We show that co-training EMMA with planner trajectories, object detection, and road graph tasks yields improvements across all three domains, highlighting EMMA's potential as a generalist model for autonomous driving applications. However, EMMA also exhibits certain limitations: it can process only a small amount of image frames, does not incorporate accurate 3D sensing modalities like LiDAR or radar and is computationally expensive. We hope that our results will inspire further research to mitigate these issues and to further evolve the state of the art in autonomous driving model architectures.
DocParser: End-to-end OCR-free Information Extraction from Visually Rich Documents
Information Extraction from visually rich documents is a challenging task that has gained a lot of attention in recent years due to its importance in several document-control based applications and its widespread commercial value. The majority of the research work conducted on this topic to date follow a two-step pipeline. First, they read the text using an off-the-shelf Optical Character Recognition (OCR) engine, then, they extract the fields of interest from the obtained text. The main drawback of these approaches is their dependence on an external OCR system, which can negatively impact both performance and computational speed. Recent OCR-free methods were proposed to address the previous issues. Inspired by their promising results, we propose in this paper an OCR-free end-to-end information extraction model named DocParser. It differs from prior end-to-end approaches by its ability to better extract discriminative character features. DocParser achieves state-of-the-art results on various datasets, while still being faster than previous works.
BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data
Sound sources localization using multichannel signal processing has been a subject of active research for decades. In recent years, the use of deep learning in audio signal processing has allowed to drastically improve performances for machine hearing. This has motivated the scientific community to also develop machine learning strategies for source localization applications. In this paper, we present BeamLearning, a multi-resolution deep learning approach that allows to encode relevant information contained in unprocessed time domain acoustic signals captured by microphone arrays. The use of raw data aims at avoiding simplifying hypothesis that most traditional model-based localization methods rely on. Benefits of its use are shown for realtime sound source 2D-localization tasks in reverberating and noisy environments. Since supervised machine learning approaches require large-sized, physically realistic, precisely labelled datasets, we also developed a fast GPU-based computation of room impulse responses using fractional delays for image source models. A thorough analysis of the network representation and extensive performance tests are carried out using the BeamLearning network with synthetic and experimental datasets. Obtained results demonstrate that the BeamLearning approach significantly outperforms the wideband MUSIC and SRP-PHAT methods in terms of localization accuracy and computational efficiency in presence of heavy measurement noise and reverberation.
Meow: End-to-End Outline Writing for Automatic Academic Survey
As academic paper publication numbers grow exponentially, conducting in-depth surveys with LLMs automatically has become an inevitable trend. Outline writing, which aims to systematically organize related works, is critical for automated survey generation. Yet existing automatic survey methods treat outline writing as mere workflow steps in the overall pipeline. Such template-based workflows produce outlines that lack in-depth understanding of the survey topic and fine-grained styles. To address these limitations, we propose Meow, the first metadata-driven outline writing framework that produces organized and faithful outlines efficiently. Specifically, we first formulate outline writing as an end-to-end task that generates hierarchical structured outlines from paper metadata. We then curate a high-quality dataset of surveys from arXiv, bioRxiv, and medRxiv, and establish systematic evaluation metrics for outline quality assessment. Finally, we employ a two-stage training approach combining supervised fine-tuning and reinforcement learning. Our 8B reasoning model demonstrates strong performance with high structural fidelity and stylistic coherence.
OptiProxy-NAS: Optimization Proxy based End-to-End Neural Architecture Search
Neural architecture search (NAS) is a hard computationally expensive optimization problem with a discrete, vast, and spiky search space. One of the key research efforts dedicated to this space focuses on accelerating NAS via certain proxy evaluations of neural architectures. Different from the prevalent predictor-based methods using surrogate models and differentiable architecture search via supernetworks, we propose an optimization proxy to streamline the NAS as an end-to-end optimization framework, named OptiProxy-NAS. In particular, using a proxy representation, the NAS space is reformulated to be continuous, differentiable, and smooth. Thereby, any differentiable optimization method can be applied to the gradient-based search of the relaxed architecture parameters. Our comprehensive experiments on 12 NAS tasks of 4 search spaces across three different domains including computer vision, natural language processing, and resource-constrained NAS fully demonstrate the superior search results and efficiency. Further experiments on low-fidelity scenarios verify the flexibility.
OneSearch: A Preliminary Exploration of the Unified End-to-End Generative Framework for E-commerce Search
Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose OneSearch, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three key innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch's superior performance for high-quality recall and ranking. The rigorous online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in Kuaishou, serving millions of users, generating tens of millions of PVs daily.
FunnelNet: An End-to-End Deep Learning Framework to Monitor Digital Heart Murmur in Real-Time
Objective: Heart murmurs are abnormal sounds caused by turbulent blood flow within the heart. Several diagnostic methods are available to detect heart murmurs and their severity, such as cardiac auscultation, echocardiography, phonocardiogram (PCG), etc. However, these methods have limitations, including extensive training and experience among healthcare providers, cost and accessibility of echocardiography, as well as noise interference and PCG data processing. This study aims to develop a novel end-to-end real-time heart murmur detection approach using traditional and depthwise separable convolutional networks. Methods: Continuous wavelet transform (CWT) was applied to extract meaningful features from the PCG data. The proposed network has three parts: the Squeeze net, the Bottleneck, and the Expansion net. The Squeeze net generates a compressed data representation, whereas the Bottleneck layer reduces computational complexity using a depthwise-separable convolutional network. The Expansion net is responsible for up-sampling the compressed data to a higher dimension, capturing tiny details of the representative data. Results: For evaluation, we used four publicly available datasets and achieved state-of-the-art performance in all datasets. Furthermore, we tested our proposed network on two resource-constrained devices: a Raspberry PI and an Android device, stripping it down into a tiny machine learning model (TinyML), achieving a maximum of 99.70%. Conclusion: The proposed model offers a deep learning framework for real-time accurate heart murmur detection within limited resources. Significance: It will significantly result in more accessible and practical medical services and reduced diagnosis time to assist medical professionals. The code is publicly available at TBA.
Towards an end-to-end artificial intelligence driven global weather forecasting system
The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models rely on analysis or reanalysis products from traditional numerical weather prediction (NWP) systems as initial conditions for making predictions. Initial states are typically generated by traditional data assimilation components, which are computational expensive and time-consuming. Here we present an AI-based data assimilation model, i.e., Adas, for global weather variables. By introducing the confidence matrix, Adas employs gated convolution to handle sparse observations and gated cross-attention for capturing the interactions between the background and observations. Further, we combine Adas with the advanced AI-based forecasting model (i.e., FengWu) to construct the first end-to-end AI-based global weather forecasting system: FengWu-Adas. We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term. Moreover, we are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential. We have also achieved the forecasts based on the analyses generated by AI with a skillful forecast lead time exceeding that of the IFS for the first time.
An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling Problems Based on Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm that allows for modeling and solving combinatorial optimization problems, such as the Job-Shop Scheduling Problem (JSSP). While CP solvers manage to find optimal or near-optimal solutions for small instances, they do not scale well to large ones, i.e., they require long computation times or yield low-quality solutions. Therefore, real-world scheduling applications often resort to fast, handcrafted, priority-based dispatching heuristics to find a good initial solution and then refine it using optimization methods. This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL). In contrast to previous RL methods, tailored for a given problem by including procedural simulation algorithms, complex feature engineering, or handcrafted reward functions, our neural-network architecture and training algorithm merely require a generic CP encoding of some scheduling problem along with a set of small instances. Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets. We evaluate our method on seven JSSP datasets from the literature, showing its ability to find higher-quality solutions for very large instances than obtained by static PDRs and by a CP solver within the same time limit.
MixFormer: End-to-End Tracking with Iterative Mixed Attention
Tracking often uses a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, we present a compact tracking framework, termed as MixFormer, built upon transformers. Our core design is to utilize the flexibility of attention operations, and propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer tracking framework simply by stacking multiple MAMs with progressive patch embedding and placing a localization head on top. In addition, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer sets a new state-of-the-art performance on five tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10k, and UAV123. In particular, our MixFormer-L achieves NP score of 79.9% on LaSOT, 88.9% on TrackingNet and EAO of 0.555 on VOT2020. We also perform in-depth ablation studies to demonstrate the effectiveness of simultaneous feature extraction and information integration. Code and trained models are publicly available at https://github.com/MCG-NJU/MixFormer.
PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold'em via Large Language Model
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs). IIGs have long served as a measure of artificial intelligence (AI) development. Representative prior works, such as DeepStack and Libratus heavily rely on counterfactual regret minimization (CFR) to tackle heads-up no-limit Poker. However, it is challenging for subsequent researchers to learn CFR from previous models and apply it to other real-world applications due to the expensive computational cost of CFR iterations. Additionally, CFR is difficult to apply to multi-player games due to the exponential growth of the game tree size. In this work, we introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates, established on a lightweight large language model (LLM). PokerGPT only requires simple textual information of Poker games for generating decision-making advice, thus guaranteeing the convenient interaction between AI and humans. We mainly transform a set of textual records acquired from real games into prompts, and use them to fine-tune a lightweight pre-trained LLM using reinforcement learning human feedback technique. To improve fine-tuning performance, we conduct prompt engineering on raw data, including filtering useful information, selecting behaviors of players with high win rates, and further processing them into textual instruction using multiple prompt engineering techniques. Through the experiments, we demonstrate that PokerGPT outperforms previous approaches in terms of win rate, model size, training time, and response speed, indicating the great potential of LLMs in solving IIGs.
GaNDLF: A Generally Nuanced Deep Learning Framework for Scalable End-to-End Clinical Workflows in Medical Imaging
Deep Learning (DL) has the potential to optimize machine learning in both the scientific and clinical communities. However, greater expertise is required to develop DL algorithms, and the variability of implementations hinders their reproducibility, translation, and deployment. Here we present the community-driven Generally Nuanced Deep Learning Framework (GaNDLF), with the goal of lowering these barriers. GaNDLF makes the mechanism of DL development, training, and inference more stable, reproducible, interpretable, and scalable, without requiring an extensive technical background. GaNDLF aims to provide an end-to-end solution for all DL-related tasks in computational precision medicine. We demonstrate the ability of GaNDLF to analyze both radiology and histology images, with built-in support for k-fold cross-validation, data augmentation, multiple modalities and output classes. Our quantitative performance evaluation on numerous use cases, anatomies, and computational tasks supports GaNDLF as a robust application framework for deployment in clinical workflows.
LEARN: Learning End-to-End Aerial Resource-Constrained Multi-Robot Navigation
Nano-UAV teams offer great agility yet face severe navigation challenges due to constrained onboard sensing, communication, and computation. Existing approaches rely on high-resolution vision or compute-intensive planners, rendering them infeasible for these platforms. We introduce LEARN, a lightweight, two-stage safety-guided reinforcement learning (RL) framework for multi-UAV navigation in cluttered spaces. Our system combines low-resolution Time-of-Flight (ToF) sensors and a simple motion planner with a compact, attention-based RL policy. In simulation, LEARN outperforms two state-of-the-art planners by 10% while using substantially fewer resources. We demonstrate LEARN's viability on six Crazyflie quadrotors, achieving fully onboard flight in diverse indoor and outdoor environments at speeds up to 2.0 m/s and traversing 0.2 m gaps.
TeLLMe v2: An Efficient End-to-End Ternary LLM Prefill and Decode Accelerator with Table-Lookup Matmul on Edge FPGAs
With the emergence of wearable devices and other embedded systems, deploying large language models (LLMs) on edge platforms has become an urgent need. However, this is challenging because of their high computational and memory demands. Although recent low-bit quantization methods (e.g., BitNet, DeepSeek) compress weights to as low as 1.58~bits with minimal accuracy loss, edge deployment is still constrained by limited on-chip resources, power budgets, and the often-neglected long latency of the prefill stage. We present TeLLMe, the first table-lookup-based ternary LLM accelerator for low-power edge FPGAs that fully supports both prefill and autoregressive decoding using 1.58-bit weights and 8-bit activations. TeLLMe incorporates several novel techniques, including (1) a table-lookup-based ternary matrix multiplication (TLMM) engine utilizing grouped activations and online precomputation for low resource utilization and high throughput; (2) a fine-grained analytic URAM-based weight buffer management scheme for efficient loading and compute engine access; (3) a streaming dataflow architecture that fuses floating-point element-wise operations with linear computations to hide latency; (4) a reversed-reordered prefill stage attention with fused attention operations for high memory efficiency; and (5) a resource-efficient specialized decoding stage attention. Under a 5~W power budget, TeLLMe delivers up to 25~tokens/s decoding throughput and 0.45--0.96~s time-to-first-token (TTFT) for 64--128 token prompts, marking a significant energy-efficiency advancement in LLM inference on edge FPGAs.
Aardvark weather: end-to-end data-driven weather forecasting
Weather forecasting is critical for a range of human activities including transportation, agriculture, industry, as well as the safety of the general public. Machine learning models have the potential to transform the complex weather prediction pipeline, but current approaches still rely on numerical weather prediction (NWP) systems, limiting forecast speed and accuracy. Here we demonstrate that a machine learning model can replace the entire operational NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests raw observations and outputs global gridded forecasts and local station forecasts. Further, it can be optimised end-to-end to maximise performance over quantities of interest. Global forecasts outperform an operational NWP baseline for multiple variables and lead times. Local station forecasts are skillful up to ten days lead time and achieve comparable and often lower errors than a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. These forecasts are produced with a remarkably simple neural process model using just 8% of the input data and three orders of magnitude less compute than existing NWP and hybrid AI-NWP methods. We anticipate that Aardvark Weather will be the starting point for a new generation of end-to-end machine learning models for medium-range forecasting that will reduce computational costs by orders of magnitude and enable the rapid and cheap creation of bespoke models for users in a variety of fields, including for the developing world where state-of-the-art local models are not currently available.
E2E-LOAD: End-to-End Long-form Online Action Detection
Recently, there has been a growing trend toward feature-based approaches for Online Action Detection (OAD). However, these approaches have limitations due to their fixed backbone design, which ignores the potential capability of a trainable backbone. In this paper, we propose the first end-to-end OAD model, termed E2E-LOAD, designed to address the major challenge of OAD, namely, long-term understanding and efficient online reasoning. Specifically, our proposed approach adopts an initial spatial model that is shared by all frames and maintains a long sequence cache for inference at a low computational cost. We also advocate an asymmetric spatial-temporal model for long-form and short-form modeling effectively. Furthermore, we propose a novel and efficient inference mechanism that accelerates heavy spatial-temporal exploration. Extensive ablation studies and experiments demonstrate the effectiveness and efficiency of our proposed method. Notably, we achieve 17.3 (+12.6) FPS for end-to-end OAD with 72.4%~(+1.2%), 90.3%~(+0.7%), and 48.1%~(+26.0%) mAP on THMOUS14, TVSeries, and HDD, respectively, which is 3x faster than previous approaches. The source code will be made publicly available.
PVT++: A Simple End-to-End Latency-Aware Visual Tracking Framework
Visual object tracking is essential to intelligent robots. Most existing approaches have ignored the online latency that can cause severe performance degradation during real-world processing. Especially for unmanned aerial vehicles (UAVs), where robust tracking is more challenging and onboard computation is limited, the latency issue can be fatal. In this work, we present a simple framework for end-to-end latency-aware tracking, i.e., end-to-end predictive visual tracking (PVT++). Unlike existing solutions that naively append Kalman Filters after trackers, PVT++ can be jointly optimized, so that it takes not only motion information but can also leverage the rich visual knowledge in most pre-trained tracker models for robust prediction. Besides, to bridge the training-evaluation domain gap, we propose a relative motion factor, empowering PVT++ to generalize to the challenging and complex UAV tracking scenes. These careful designs have made the small-capacity lightweight PVT++ a widely effective solution. Additionally, this work presents an extended latency-aware evaluation benchmark for assessing an any-speed tracker in the online setting. Empirical results on a robotic platform from the aerial perspective show that PVT++ can achieve significant performance gain on various trackers and exhibit higher accuracy than prior solutions, largely mitigating the degradation brought by latency.
Chain-of-Agents: End-to-End Agent Foundation Models via Multi-Agent Distillation and Agentic RL
Recent advances in large language models (LLMs) and multi-agent systems have demonstrated remarkable capabilities in complex problem-solving tasks such as deep research, vibe coding, and mathematical reasoning. However, most existing multi-agent systems are built upon manual prompt/workflow engineering with sophisticated agent frameworks, making them computationally inefficient, less capable, and can not benefit from data-centric learning. In this work, we introduce Chain-of-Agents (CoA), a novel paradigm of LLM reasoning that enables native end-to-end complex problem-solving in the same way as a multi-agent system (i.e., multi-turn problem solving with multiple tools and multiple agents) within one model. In chain-of-agents problem-solving, the model dynamically activates different tool agents and role-playing agents to simulate multi-agent collaboration in an end-to-end fashion. To elicit end-to-end chain-of-agents problem-solving abilities in LLMs, we introduce a multi-agent distillation framework to distill state-of-the-art multi-agent systems into chain-of-agents trajectories for agentic supervised fine-tuning. We then use agentic reinforcement learning on verifiable agentic tasks to further improve the models' capabilities on chain-of-agents problem solving. We call the resulting models Agent Foundation Models (AFMs). Our empirical studies demonstrate that AFM establishes new state-of-the-art performance across diverse benchmarks in both web agent and code agent settings. We make the entire research, including the model weights, code for training and evaluation, and the training data, fully open-sourced, which offers a solid starting point for future research on agent models and agentic RL.
DreamScene: 3D Gaussian-based End-to-end Text-to-3D Scene Generation
Generating 3D scenes from natural language holds great promise for applications in gaming, film, and design. However, existing methods struggle with automation, 3D consistency, and fine-grained control. We present DreamScene, an end-to-end framework for high-quality and editable 3D scene generation from text or dialogue. DreamScene begins with a scene planning module, where a GPT-4 agent infers object semantics and spatial constraints to construct a hybrid graph. A graph-based placement algorithm then produces a structured, collision-free layout. Based on this layout, Formation Pattern Sampling (FPS) generates object geometry using multi-timestep sampling and reconstructive optimization, enabling fast and realistic synthesis. To ensure global consistent, DreamScene employs a progressive camera sampling strategy tailored to both indoor and outdoor settings. Finally, the system supports fine-grained scene editing, including object movement, appearance changes, and 4D dynamic motion. Experiments demonstrate that DreamScene surpasses prior methods in quality, consistency, and flexibility, offering a practical solution for open-domain 3D content creation. Code and demos are available at https://jahnsonblack.github.io/DreamScene-Full/.
YOLOv10: Real-Time End-to-End Object Detection
Over the past years, YOLOs have emerged as the predominant paradigm in the field of real-time object detection owing to their effective balance between computational cost and detection performance. Researchers have explored the architectural designs, optimization objectives, data augmentation strategies, and others for YOLOs, achieving notable progress. However, the reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs and adversely impacts the inference latency. Besides, the design of various components in YOLOs lacks the comprehensive and thorough inspection, resulting in noticeable computational redundancy and limiting the model's capability. It renders the suboptimal efficiency, along with considerable potential for performance improvements. In this work, we aim to further advance the performance-efficiency boundary of YOLOs from both the post-processing and model architecture. To this end, we first present the consistent dual assignments for NMS-free training of YOLOs, which brings competitive performance and low inference latency simultaneously. Moreover, we introduce the holistic efficiency-accuracy driven model design strategy for YOLOs. We comprehensively optimize various components of YOLOs from both efficiency and accuracy perspectives, which greatly reduces the computational overhead and enhances the capability. The outcome of our effort is a new generation of YOLO series for real-time end-to-end object detection, dubbed YOLOv10. Extensive experiments show that YOLOv10 achieves state-of-the-art performance and efficiency across various model scales. For example, our YOLOv10-S is 1.8times faster than RT-DETR-R18 under the similar AP on COCO, meanwhile enjoying 2.8times smaller number of parameters and FLOPs. Compared with YOLOv9-C, YOLOv10-B has 46\% less latency and 25\% fewer parameters for the same performance.
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
Extraction of building footprint polygons from remotely sensed data is essential for several urban understanding tasks such as reconstruction, navigation, and mapping. Despite significant progress in the area, extracting accurate polygonal building footprints remains an open problem. In this paper, we introduce Pix2Poly, an attention-based end-to-end trainable and differentiable deep neural network capable of directly generating explicit high-quality building footprints in a ring graph format. Pix2Poly employs a generative encoder-decoder transformer to produce a sequence of graph vertex tokens whose connectivity information is learned by an optimal matching network. Compared to previous graph learning methods, ours is a truly end-to-end trainable approach that extracts high-quality building footprints and road networks without requiring complicated, computationally intensive raster loss functions and intricate training pipelines. Upon evaluating Pix2Poly on several complex and challenging datasets, we report that Pix2Poly outperforms state-of-the-art methods in several vector shape quality metrics while being an entirely explicit method. Our code is available at https://github.com/yeshwanth95/Pix2Poly.
WiseAD: Knowledge Augmented End-to-End Autonomous Driving with Vision-Language Model
The emergence of general human knowledge and impressive logical reasoning capacity in rapidly progressed vision-language models (VLMs) have driven increasing interest in applying VLMs to high-level autonomous driving tasks, such as scene understanding and decision-making. However, an in-depth study on the relationship between knowledge proficiency, especially essential driving expertise, and closed-loop autonomous driving performance requires further exploration. In this paper, we investigate the effects of the depth and breadth of fundamental driving knowledge on closed-loop trajectory planning and introduce WiseAD, a specialized VLM tailored for end-to-end autonomous driving capable of driving reasoning, action justification, object recognition, risk analysis, driving suggestions, and trajectory planning across diverse scenarios. We employ joint training on driving knowledge and planning datasets, enabling the model to perform knowledge-aligned trajectory planning accordingly. Extensive experiments indicate that as the diversity of driving knowledge extends, critical accidents are notably reduced, contributing 11.9% and 12.4% improvements in the driving score and route completion on the Carla closed-loop evaluations, achieving state-of-the-art performance. Moreover, WiseAD also demonstrates remarkable performance in knowledge evaluations on both in-domain and out-of-domain datasets.
GLONET: Mercator's end-to-end neural Global Ocean forecasting system
Accurate ocean forecasting is crucial in different areas ranging from science to decision making. Recent advancements in data-driven models have shown significant promise, particularly in weather forecasting community, but yet no data-driven approaches have matched the accuracy and the scalability of traditional global ocean forecasting systems that rely on physics-driven numerical models and can be very computationally expensive, depending on their spatial resolution or complexity. Here, we introduce GLONET, a global ocean neural network-based forecasting system, developed by Mercator Ocean International. GLONET is trained on the global Mercator Ocean physical reanalysis GLORYS12 to integrate physics-based principles through neural operators and networks, which dynamically capture local-global interactions within a unified, scalable framework, ensuring high small-scale accuracy and efficient dynamics. GLONET's performance is assessed and benchmarked against two other forecasting systems: the global Mercator Ocean analysis and forecasting 1/12 high-resolution physical system GLO12 and a recent neural-based system also trained from GLORYS12. A series of comprehensive validation metrics is proposed, specifically tailored for neural network-based ocean forecasting systems, which extend beyond traditional point-wise error assessments that can introduce bias towards neural networks optimized primarily to minimize such metrics. The preliminary evaluation of GLONET shows promising results, for temperature, sea surface height, salinity and ocean currents. GLONET's experimental daily forecast are accessible through the European Digital Twin Ocean platform EDITO.
ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking
We introduce ReFinED, an efficient end-to-end entity linking model which uses fine-grained entity types and entity descriptions to perform linking. The model performs mention detection, fine-grained entity typing, and entity disambiguation for all mentions within a document in a single forward pass, making it more than 60 times faster than competitive existing approaches. ReFinED also surpasses state-of-the-art performance on standard entity linking datasets by an average of 3.7 F1. The model is capable of generalising to large-scale knowledge bases such as Wikidata (which has 15 times more entities than Wikipedia) and of zero-shot entity linking. The combination of speed, accuracy and scale makes ReFinED an effective and cost-efficient system for extracting entities from web-scale datasets, for which the model has been successfully deployed. Our code and pre-trained models are available at https://github.com/alexa/ReFinED
CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale
The privacy concerns of providing deep learning inference as a service have underscored the need for private inference (PI) protocols that protect users' data and the service provider's model using cryptographic methods. Recently proposed PI protocols have achieved significant reductions in PI latency by moving the computationally heavy homomorphic encryption (HE) parts to an offline/pre-compute phase. Paired with recent optimizations that tailor networks for PI, these protocols have achieved performance levels that are tantalizingly close to being practical. In this paper, we conduct a rigorous end-to-end characterization of PI protocols and optimization techniques and find that the current understanding of PI performance is overly optimistic. Specifically, we find that offline storage costs of garbled circuits (GC), a key cryptographic protocol used in PI, on user/client devices are prohibitively high and force much of the expensive offline HE computation to the online phase, resulting in a 10-1000times increase to PI latency. We propose a modified PI protocol that significantly reduces client-side storage costs for a small increase in online latency. Evaluated end-to-end, the modified protocol outperforms current protocols by reducing the mean PI latency by 4times for ResNet18 on TinyImageNet. We conclude with a discussion of several recently proposed PI optimizations in light of the findings and note many actually increase PI latency when evaluated from an end-to-end perspective.
Lightweight and High-Fidelity End-to-End Text-to-Speech with Multi-Band Generation and Inverse Short-Time Fourier Transform
We propose a lightweight end-to-end text-to-speech model using multi-band generation and inverse short-time Fourier transform. Our model is based on VITS, a high-quality end-to-end text-to-speech model, but adopts two changes for more efficient inference: 1) the most computationally expensive component is partially replaced with a simple inverse short-time Fourier transform, and 2) multi-band generation, with fixed or trainable synthesis filters, is used to generate waveforms. Unlike conventional lightweight models, which employ optimization or knowledge distillation separately to train two cascaded components, our method enjoys the full benefits of end-to-end optimization. Experimental results show that our model synthesized speech as natural as that synthesized by VITS, while achieving a real-time factor of 0.066 on an Intel Core i7 CPU, 4.1 times faster than VITS. Moreover, a smaller version of the model significantly outperformed a lightweight baseline model with respect to both naturalness and inference speed. Code and audio samples are available from https://github.com/MasayaKawamura/MB-iSTFT-VITS.
Reverb Conversion of Mixed Vocal Tracks Using an End-to-end Convolutional Deep Neural Network
Reverb plays a critical role in music production, where it provides listeners with spatial realization, timbre, and texture of the music. Yet, it is challenging to reproduce the musical reverb of a reference music track even by skilled engineers. In response, we propose an end-to-end system capable of switching the musical reverb factor of two different mixed vocal tracks. This method enables us to apply the reverb of the reference track to the source track to which the effect is desired. Further, our model can perform de-reverberation when the reference track is used as a dry vocal source. The proposed model is trained in combination with an adversarial objective, which makes it possible to handle high-resolution audio samples. The perceptual evaluation confirmed that the proposed model can convert the reverb factor with the preferred rate of 64.8%. To the best of our knowledge, this is the first attempt to apply deep neural networks to converting music reverb of vocal tracks.
Identifying Functionally Important Features with End-to-End Sparse Dictionary Learning
Identifying the features learned by neural networks is a core challenge in mechanistic interpretability. Sparse autoencoders (SAEs), which learn a sparse, overcomplete dictionary that reconstructs a network's internal activations, have been used to identify these features. However, SAEs may learn more about the structure of the datatset than the computational structure of the network. There is therefore only indirect reason to believe that the directions found in these dictionaries are functionally important to the network. We propose end-to-end (e2e) sparse dictionary learning, a method for training SAEs that ensures the features learned are functionally important by minimizing the KL divergence between the output distributions of the original model and the model with SAE activations inserted. Compared to standard SAEs, e2e SAEs offer a Pareto improvement: They explain more network performance, require fewer total features, and require fewer simultaneously active features per datapoint, all with no cost to interpretability. We explore geometric and qualitative differences between e2e SAE features and standard SAE features. E2e dictionary learning brings us closer to methods that can explain network behavior concisely and accurately. We release our library for training e2e SAEs and reproducing our analysis at https://github.com/ApolloResearch/e2e_sae
PIGEON: Optimizing CUDA Code Generator for End-to-End Training and Inference of Relational Graph Neural Networks
Relational graph neural networks (RGNNs) are graph neural networks (GNNs) with dedicated structures for modeling the different types of nodes and/or edges in heterogeneous graphs. While RGNNs have been increasingly adopted in many real-world applications due to their versatility and accuracy, they pose performance and system design challenges due to their inherent computation patterns, gap between the programming interface and kernel APIs, and heavy programming efforts in optimizing kernels caused by their coupling with data layout and heterogeneity. To systematically address these challenges, we propose Pigeon, a novel two-level intermediate representation (IR) and its code generator framework, that (a) represents the key properties of the RGNN models to bridge the gap between the programming interface and kernel APIs, (b) decouples model semantics, data layout, and operators-specific optimization from each other to reduce programming efforts, (c) expresses and leverages optimization opportunities in inter-operator transforms, data layout, and operator-specific schedules. By building on one general matrix multiply (GEMM) template and a node/edge traversal template, Pigeon achieves up to 7.8x speed-up in inference and 5.6x speed-up in training compared with the state-of-the-art public systems in select models, i.e., RGCN, RGAT, HGT, when running heterogeneous graphs provided by Deep Graph Library (DGL) and Open Graph Benchmark (OGB). Pigeon also triggers fewer out-of-memory (OOM) errors. In addition, we propose linear operator fusion and compact materialization to further accelerate the system by up to 2.2x.
GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
Multi-sensor fusion is crucial for improving the performance and robustness of end-to-end autonomous driving systems. Existing methods predominantly adopt either attention-based flatten fusion or bird's eye view fusion through geometric transformations. However, these approaches often suffer from limited interpretability or dense computational overhead. In this paper, we introduce GaussianFusion, a Gaussian-based multi-sensor fusion framework for end-to-end autonomous driving. Our method employs intuitive and compact Gaussian representations as intermediate carriers to aggregate information from diverse sensors. Specifically, we initialize a set of 2D Gaussians uniformly across the driving scene, where each Gaussian is parameterized by physical attributes and equipped with explicit and implicit features. These Gaussians are progressively refined by integrating multi-modal features. The explicit features capture rich semantic and spatial information about the traffic scene, while the implicit features provide complementary cues beneficial for trajectory planning. To fully exploit rich spatial and semantic information in Gaussians, we design a cascade planning head that iteratively refines trajectory predictions through interactions with Gaussians. Extensive experiments on the NAVSIM and Bench2Drive benchmarks demonstrate the effectiveness and robustness of the proposed GaussianFusion framework. The source code will be released at https://github.com/Say2L/GaussianFusion.
OpenEMMA: Open-Source Multimodal Model for End-to-End Autonomous Driving
Since the advent of Multimodal Large Language Models (MLLMs), they have made a significant impact across a wide range of real-world applications, particularly in Autonomous Driving (AD). Their ability to process complex visual data and reason about intricate driving scenarios has paved the way for a new paradigm in end-to-end AD systems. However, the progress of developing end-to-end models for AD has been slow, as existing fine-tuning methods demand substantial resources, including extensive computational power, large-scale datasets, and significant funding. Drawing inspiration from recent advancements in inference computing, we propose OpenEMMA, an open-source end-to-end framework based on MLLMs. By incorporating the Chain-of-Thought reasoning process, OpenEMMA achieves significant improvements compared to the baseline when leveraging a diverse range of MLLMs. Furthermore, OpenEMMA demonstrates effectiveness, generalizability, and robustness across a variety of challenging driving scenarios, offering a more efficient and effective approach to autonomous driving. We release all the codes in https://github.com/taco-group/OpenEMMA.
Sequence-Level Knowledge Distillation for Class-Incremental End-to-End Spoken Language Understanding
The ability to learn new concepts sequentially is a major weakness for modern neural networks, which hinders their use in non-stationary environments. Their propensity to fit the current data distribution to the detriment of the past acquired knowledge leads to the catastrophic forgetting issue. In this work we tackle the problem of Spoken Language Understanding applied to a continual learning setting. We first define a class-incremental scenario for the SLURP dataset. Then, we propose three knowledge distillation (KD) approaches to mitigate forgetting for a sequence-to-sequence transformer model: the first KD method is applied to the encoder output (audio-KD), and the other two work on the decoder output, either directly on the token-level (tok-KD) or on the sequence-level (seq-KD) distributions. We show that the seq-KD substantially improves all the performance metrics, and its combination with the audio-KD further decreases the average WER and enhances the entity prediction metric.
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
Parameter-Efficient Conformers via Sharing Sparsely-Gated Experts for End-to-End Speech Recognition
While transformers and their variant conformers show promising performance in speech recognition, the parameterized property leads to much memory cost during training and inference. Some works use cross-layer weight-sharing to reduce the parameters of the model. However, the inevitable loss of capacity harms the model performance. To address this issue, this paper proposes a parameter-efficient conformer via sharing sparsely-gated experts. Specifically, we use sparsely-gated mixture-of-experts (MoE) to extend the capacity of a conformer block without increasing computation. Then, the parameters of the grouped conformer blocks are shared so that the number of parameters is reduced. Next, to ensure the shared blocks with the flexibility of adapting representations at different levels, we design the MoE routers and normalization individually. Moreover, we use knowledge distillation to further improve the performance. Experimental results show that the proposed model achieves competitive performance with 1/3 of the parameters of the encoder, compared with the full-parameter model.
Building a Privacy Web with SPIDEr -- Secure Pipeline for Information De-Identification with End-to-End Encryption
Data de-identification makes it possible to glean insights from data while preserving user privacy. The use of Trusted Execution Environments (TEEs) allow for the execution of de-identification applications on the cloud without the need for a user to trust the third-party application provider. In this paper, we present SPIDEr - Secure Pipeline for Information De-Identification with End-to-End Encryption, our implementation of an end-to-end encrypted data de-identification pipeline. SPIDEr supports classical anonymisation techniques such as suppression, pseudonymisation, generalisation, and aggregation, as well as techniques that offer a formal privacy guarantee such as k-anonymisation and differential privacy. To enable scalability and improve performance on constrained TEE hardware, we enable batch processing of data for differential privacy computations. We present our design of the control flows for end-to-end secure execution of de-identification operations within a TEE. As part of the control flow for running SPIDEr within the TEE, we perform attestation, a process that verifies that the software binaries were properly instantiated on a known, trusted platform.
GLM-4-Voice: Towards Intelligent and Human-Like End-to-End Spoken Chatbot
We introduce GLM-4-Voice, an intelligent and human-like end-to-end spoken chatbot. It supports both Chinese and English, engages in real-time voice conversations, and varies vocal nuances such as emotion, intonation, speech rate, and dialect according to user instructions. GLM-4-Voice uses an ultra-low bitrate (175bps), single-codebook speech tokenizer with 12.5Hz frame rate derived from an automatic speech recognition (ASR) model by incorporating a vector-quantized bottleneck into the encoder. To efficiently transfer knowledge from text to speech modalities, we synthesize speech-text interleaved data from existing text pre-training corpora using a text-to-token model. We continue pre-training from the pre-trained text language model GLM-4-9B with a combination of unsupervised speech data, interleaved speech-text data, and supervised speech-text data, scaling up to 1 trillion tokens, achieving state-of-the-art performance in both speech language modeling and spoken question answering. We then fine-tune the pre-trained model with high-quality conversational speech data, achieving superior performance compared to existing baselines in both conversational ability and speech quality. The open models can be accessed through https://github.com/THUDM/GLM-4-Voice and https://huggingface.co/THUDM/glm-4-voice-9b.
Point2RBox: Combine Knowledge from Synthetic Visual Patterns for End-to-end Oriented Object Detection with Single Point Supervision
With the rapidly increasing demand for oriented object detection (OOD), recent research involving weakly-supervised detectors for learning rotated box (RBox) from the horizontal box (HBox) has attracted more and more attention. In this paper, we explore a more challenging yet label-efficient setting, namely single point-supervised OOD, and present our approach called Point2RBox. Specifically, we propose to leverage two principles: 1) Synthetic pattern knowledge combination: By sampling around each labeled point on the image, we spread the object feature to synthetic visual patterns with known boxes to provide the knowledge for box regression. 2) Transform self-supervision: With a transformed input image (e.g. scaled/rotated), the output RBoxes are trained to follow the same transformation so that the network can perceive the relative size/rotation between objects. The detector is further enhanced by a few devised techniques to cope with peripheral issues, e.g. the anchor/layer assignment as the size of the object is not available in our point supervision setting. To our best knowledge, Point2RBox is the first end-to-end solution for point-supervised OOD. In particular, our method uses a lightweight paradigm, yet it achieves a competitive performance among point-supervised alternatives, 41.05%/27.62%/80.01% on DOTA/DIOR/HRSC datasets.
SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion
We introduce SmolDocling, an ultra-compact vision-language model targeting end-to-end document conversion. Our model comprehensively processes entire pages by generating DocTags, a new universal markup format that captures all page elements in their full context with location. Unlike existing approaches that rely on large foundational models, or ensemble solutions that rely on handcrafted pipelines of multiple specialized models, SmolDocling offers an end-to-end conversion for accurately capturing content, structure and spatial location of document elements in a 256M parameters vision-language model. SmolDocling exhibits robust performance in correctly reproducing document features such as code listings, tables, equations, charts, lists, and more across a diverse range of document types including business documents, academic papers, technical reports, patents, and forms -- significantly extending beyond the commonly observed focus on scientific papers. Additionally, we contribute novel publicly sourced datasets for charts, tables, equations, and code recognition. Experimental results demonstrate that SmolDocling competes with other Vision Language Models that are up to 27 times larger in size, while reducing computational requirements substantially. The model is currently available, datasets will be publicly available soon.
AnchDrive: Bootstrapping Diffusion Policies with Hybrid Trajectory Anchors for End-to-End Driving
End-to-end multi-modal planning has become a transformative paradigm in autonomous driving, effectively addressing behavioral multi-modality and the generalization challenge in long-tail scenarios. We propose AnchDrive, a framework for end-to-end driving that effectively bootstraps a diffusion policy to mitigate the high computational cost of traditional generative models. Rather than denoising from pure noise, AnchDrive initializes its planner with a rich set of hybrid trajectory anchors. These anchors are derived from two complementary sources: a static vocabulary of general driving priors and a set of dynamic, context-aware trajectories. The dynamic trajectories are decoded in real-time by a Transformer that processes dense and sparse perceptual features. The diffusion model then learns to refine these anchors by predicting a distribution of trajectory offsets, enabling fine-grained refinement. This anchor-based bootstrapping design allows for efficient generation of diverse, high-quality trajectories. Experiments on the NAVSIM benchmark confirm that AnchDrive sets a new state-of-the-art and shows strong generalizability
ViLaD: A Large Vision Language Diffusion Framework for End-to-End Autonomous Driving
End-to-end autonomous driving systems built on Vision Language Models (VLMs) have shown significant promise, yet their reliance on autoregressive architectures introduces some limitations for real-world applications. The sequential, token-by-token generation process of these models results in high inference latency and cannot perform bidirectional reasoning, making them unsuitable for dynamic, safety-critical environments. To overcome these challenges, we introduce ViLaD, a novel Large Vision Language Diffusion (LVLD) framework for end-to-end autonomous driving that represents a paradigm shift. ViLaD leverages a masked diffusion model that enables parallel generation of entire driving decision sequences, significantly reducing computational latency. Moreover, its architecture supports bidirectional reasoning, allowing the model to consider both past and future simultaneously, and supports progressive easy-first generation to iteratively improve decision quality. We conduct comprehensive experiments on the nuScenes dataset, where ViLaD outperforms state-of-the-art autoregressive VLM baselines in both planning accuracy and inference speed, while achieving a near-zero failure rate. Furthermore, we demonstrate the framework's practical viability through a real-world deployment on an autonomous vehicle for an interactive parking task, confirming its effectiveness and soundness for practical applications.
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
Deep learning techniques have provided significant improvements in hyperspectral image (HSI) classification. The current deep learning based HSI classifiers follow a patch-based learning framework by dividing the image into overlapping patches. As such, these methods are local learning methods, which have a high computational cost. In this paper, a fast patch-free global learning (FPGA) framework is proposed for HSI classification. In FPGA, an encoder-decoder based FCN is utilized to consider the global spatial information by processing the whole image, which results in fast inference. However, it is difficult to directly utilize the encoder-decoder based FCN for HSI classification as it always fails to converge due to the insufficiently diverse gradients caused by the limited training samples. To solve the divergence problem and maintain the abilities of FCN of fast inference and global spatial information mining, a global stochastic stratified sampling strategy is first proposed by transforming all the training samples into a stochastic sequence of stratified samples. This strategy can obtain diverse gradients to guarantee the convergence of the FCN in the FPGA framework. For a better design of FCN architecture, FreeNet, which is a fully end-to-end network for HSI classification, is proposed to maximize the exploitation of the global spatial information and boost the performance via a spectral attention based encoder and a lightweight decoder. A lateral connection module is also designed to connect the encoder and decoder, fusing the spatial details in the encoder and the semantic features in the decoder. The experimental results obtained using three public benchmark datasets suggest that the FPGA framework is superior to the patch-based framework in both speed and accuracy for HSI classification. Code has been made available at: https://github.com/Z-Zheng/FreeNet.
Target-point Attention Transformer: A novel trajectory predict network for end-to-end autonomous driving
In the field of autonomous driving, there have been many excellent perception models for object detection, semantic segmentation, and other tasks, but how can we effectively use the perception models for vehicle planning? Traditional autonomous vehicle trajectory prediction methods not only need to obey traffic rules to avoid collisions, but also need to follow the prescribed route to reach the destination. In this paper, we propose a Transformer-based trajectory prediction network for end-to-end autonomous driving without rules called Target-point Attention Transformer network (TAT). We use the attention mechanism to realize the interaction between the predicted trajectory and the perception features as well as target-points. We demonstrate that our proposed method outperforms existing conditional imitation learning and GRU-based methods, significantly reducing the occurrence of accidents and improving route completion. We evaluate our approach in complex closed loop driving scenarios in cities using the CARLA simulator and achieve state-of-the-art performance.
FLY-TTS: Fast, Lightweight and High-Quality End-to-End Text-to-Speech Synthesis
While recent advances in Text-To-Speech synthesis have yielded remarkable improvements in generating high-quality speech, research on lightweight and fast models is limited. This paper introduces FLY-TTS, a new fast, lightweight and high-quality speech synthesis system based on VITS. Specifically, 1) We replace the decoder with ConvNeXt blocks that generate Fourier spectral coefficients followed by the inverse short-time Fourier transform to synthesize waveforms; 2) To compress the model size, we introduce the grouped parameter-sharing mechanism to the text encoder and flow-based model; 3) We further employ the large pre-trained WavLM model for adversarial training to improve synthesis quality. Experimental results show that our model achieves a real-time factor of 0.0139 on an Intel Core i9 CPU, 8.8x faster than the baseline (0.1221), with a 1.6x parameter compression. Objective and subjective evaluations indicate that FLY-TTS exhibits comparable speech quality to the strong baseline.
FlexControl: Computation-Aware ControlNet with Differentiable Router for Text-to-Image Generation
ControlNet offers a powerful way to guide diffusion-based generative models, yet most implementations rely on ad-hoc heuristics to choose which network blocks to control-an approach that varies unpredictably with different tasks. To address this gap, we propose FlexControl, a novel framework that copies all diffusion blocks during training and employs a trainable gating mechanism to dynamically select which blocks to activate at each denoising step. With introducing a computation-aware loss, we can encourage control blocks only to activate when it benefit the generation quality. By eliminating manual block selection, FlexControl enhances adaptability across diverse tasks and streamlines the design pipeline, with computation-aware training loss in an end-to-end training manner. Through comprehensive experiments on both UNet (e.g., SD1.5) and DiT (e.g., SD3.0), we show that our method outperforms existing ControlNet variants in certain key aspects of interest. As evidenced by both quantitative and qualitative evaluations, FlexControl preserves or enhances image fidelity while also reducing computational overhead by selectively activating the most relevant blocks. These results underscore the potential of a flexible, data-driven approach for controlled diffusion and open new avenues for efficient generative model design.
Beyond Top-Grasps Through Scene Completion
Current end-to-end grasp planning methods propose grasps in the order of seconds that attain high grasp success rates on a diverse set of objects, but often by constraining the workspace to top-grasps. In this work, we present a method that allows end-to-end top-grasp planning methods to generate full six-degree-of-freedom grasps using a single RGB-D view as input. This is achieved by estimating the complete shape of the object to be grasped, then simulating different viewpoints of the object, passing the simulated viewpoints to an end-to-end grasp generation method, and finally executing the overall best grasp. The method was experimentally validated on a Franka Emika Panda by comparing 429 grasps generated by the state-of-the-art Fully Convolutional Grasp Quality CNN, both on simulated and real camera images. The results show statistically significant improvements in terms of grasp success rate when using simulated images over real camera images, especially when the real camera viewpoint is angled. Code and video are available at https://irobotics.aalto.fi/beyond-top-grasps-through-scene-completion/.
LazyVLM: Neuro-Symbolic Approach to Video Analytics
Current video analytics approaches face a fundamental trade-off between flexibility and efficiency. End-to-end Vision Language Models (VLMs) often struggle with long-context processing and incur high computational costs, while neural-symbolic methods depend heavily on manual labeling and rigid rule design. In this paper, we introduce LazyVLM, a neuro-symbolic video analytics system that provides a user-friendly query interface similar to VLMs, while addressing their scalability limitation. LazyVLM enables users to effortlessly drop in video data and specify complex multi-frame video queries using a semi-structured text interface for video analytics. To address the scalability limitations of VLMs, LazyVLM decomposes multi-frame video queries into fine-grained operations and offloads the bulk of the processing to efficient relational query execution and vector similarity search. We demonstrate that LazyVLM provides a robust, efficient, and user-friendly solution for querying open-domain video data at scale.
PonderNet: Learning to Ponder
In standard neural networks the amount of computation used grows with the size of the inputs, but not with the complexity of the problem being learnt. To overcome this limitation we introduce PonderNet, a new algorithm that learns to adapt the amount of computation based on the complexity of the problem at hand. PonderNet learns end-to-end the number of computational steps to achieve an effective compromise between training prediction accuracy, computational cost and generalization. On a complex synthetic problem, PonderNet dramatically improves performance over previous adaptive computation methods and additionally succeeds at extrapolation tests where traditional neural networks fail. Also, our method matched the current state of the art results on a real world question and answering dataset, but using less compute. Finally, PonderNet reached state of the art results on a complex task designed to test the reasoning capabilities of neural networks.1
Trace is the New AutoDiff -- Unlocking Efficient Optimization of Computational Workflows
We study a class of optimization problems motivated by automating the design and update of AI systems like coding assistants, robots, and copilots. We propose an end-to-end optimization framework, Trace, which treats the computational workflow of an AI system as a graph akin to neural networks, based on a generalization of back-propagation. Optimization of computational workflows often involves rich feedback (e.g. console output or user's responses), heterogeneous parameters (e.g. prompts, hyper-parameters, codes), and intricate objectives (beyond maximizing a score). Moreover, its computation graph can change dynamically with the inputs and parameters. We frame a new mathematical setup of iterative optimization, Optimization with Trace Oracle (OPTO), to capture and abstract these properties so as to design optimizers that work across many domains. In OPTO, an optimizer receives an execution trace along with feedback on the computed output and updates parameters iteratively. Trace is the tool to implement OPTO in practice. Trace has a Python interface that efficiently converts a computational workflow into an OPTO instance using a PyTorch-like interface. Using Trace, we develop a general-purpose LLM-based optimizer called OptoPrime that can effectively solve OPTO problems. In empirical studies, we find that OptoPrime is capable of first-order numerical optimization, prompt optimization, hyper-parameter tuning, robot controller design, code debugging, etc., and is often competitive with specialized optimizers for each domain. We believe that Trace, OptoPrime and the OPTO framework will enable the next generation of interactive agents that automatically adapt using various kinds of feedback. Website: https://microsoft.github.io/Trace
Deep Reinforcement Learning of Volume-guided Progressive View Inpainting for 3D Point Scene Completion from a Single Depth Image
We present a deep reinforcement learning method of progressive view inpainting for 3D point scene completion under volume guidance, achieving high-quality scene reconstruction from only a single depth image with severe occlusion. Our approach is end-to-end, consisting of three modules: 3D scene volume reconstruction, 2D depth map inpainting, and multi-view selection for completion. Given a single depth image, our method first goes through the 3D volume branch to obtain a volumetric scene reconstruction as a guide to the next view inpainting step, which attempts to make up the missing information; the third step involves projecting the volume under the same view of the input, concatenating them to complete the current view depth, and integrating all depth into the point cloud. Since the occluded areas are unavailable, we resort to a deep Q-Network to glance around and pick the next best view for large hole completion progressively until a scene is adequately reconstructed while guaranteeing validity. All steps are learned jointly to achieve robust and consistent results. We perform qualitative and quantitative evaluations with extensive experiments on the SUNCG data, obtaining better results than the state of the art.
Handwritten digit string recognition by combination of residual network and RNN-CTC
Recurrent neural network (RNN) and connectionist temporal classification (CTC) have showed successes in many sequence labeling tasks with the strong ability of dealing with the problems where the alignment between the inputs and the target labels is unknown. Residual network is a new structure of convolutional neural network and works well in various computer vision tasks. In this paper, we take advantage of the architectures mentioned above to create a new network for handwritten digit string recognition. First we design a residual network to extract features from input images, then we employ a RNN to model the contextual information within feature sequences and predict recognition results. At the top of this network, a standard CTC is applied to calculate the loss and yield the final results. These three parts compose an end-to-end trainable network. The proposed new architecture achieves the highest performances on ORAND-CAR-A and ORAND-CAR-B with recognition rates 89.75% and 91.14%, respectively. In addition, the experiments on a generated captcha dataset which has much longer string length show the potential of the proposed network to handle long strings.
Automatically Identifying Local and Global Circuits with Linear Computation Graphs
Circuit analysis of any certain model behavior is a central task in mechanistic interpretability. We introduce our circuit discovery pipeline with Sparse Autoencoders (SAEs) and a variant called Transcoders. With these two modules inserted into the model, the model's computation graph with respect to OV and MLP circuits becomes strictly linear. Our methods do not require linear approximation to compute the causal effect of each node. This fine-grained graph identifies both end-to-end and local circuits accounting for either logits or intermediate features. We can scalably apply this pipeline with a technique called Hierarchical Attribution. We analyze three kinds of circuits in GPT-2 Small: bracket, induction, and Indirect Object Identification circuits. Our results reveal new findings underlying existing discoveries.
Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization
Answering complex logical queries on incomplete knowledge graphs is a challenging task, and has been widely studied. Embedding-based methods require training on complex queries, and cannot generalize well to out-of-distribution query structures. Recent work frames this task as an end-to-end optimization problem, and it only requires a pretrained link predictor. However, due to the exponentially large combinatorial search space, the optimal solution can only be approximated, limiting the final accuracy. In this work, we propose QTO (Query Computation Tree Optimization) that can efficiently find the exact optimal solution. QTO finds the optimal solution by a forward-backward propagation on the tree-like computation graph, i.e., query computation tree. In particular, QTO utilizes the independence encoded in the query computation tree to reduce the search space, where only local computations are involved during the optimization procedure. Experiments on 3 datasets show that QTO obtains state-of-the-art performance on complex query answering, outperforming previous best results by an average of 22%. Moreover, QTO can interpret the intermediate solutions for each of the one-hop atoms in the query with over 90% accuracy. The code of our paper is at https://github.com/bys0318/QTO.
Style-Talker: Finetuning Audio Language Model and Style-Based Text-to-Speech Model for Fast Spoken Dialogue Generation
The rapid advancement of large language models (LLMs) has significantly propelled the development of text-based chatbots, demonstrating their capability to engage in coherent and contextually relevant dialogues. However, extending these advancements to enable end-to-end speech-to-speech conversation bots remains a formidable challenge, primarily due to the extensive dataset and computational resources required. The conventional approach of cascading automatic speech recognition (ASR), LLM, and text-to-speech (TTS) models in a pipeline, while effective, suffers from unnatural prosody because it lacks direct interactions between the input audio and its transcribed text and the output audio. These systems are also limited by their inherent latency from the ASR process for real-time applications. This paper introduces Style-Talker, an innovative framework that fine-tunes an audio LLM alongside a style-based TTS model for fast spoken dialog generation. Style-Talker takes user input audio and uses transcribed chat history and speech styles to generate both the speaking style and text for the response. Subsequently, the TTS model synthesizes the speech, which is then played back to the user. While the response speech is being played, the input speech undergoes ASR processing to extract the transcription and speaking style, serving as the context for the ensuing dialogue turn. This novel pipeline accelerates the traditional cascade ASR-LLM-TTS systems while integrating rich paralinguistic information from input speech. Our experimental results show that Style-Talker significantly outperforms the conventional cascade and speech-to-speech baselines in terms of both dialogue naturalness and coherence while being more than 50% faster.
Flash Window Attention: speedup the attention computation for Swin Transformer
To address the high resolution of image pixels, the Swin Transformer introduces window attention. This mechanism divides an image into non-overlapping windows and restricts attention computation to within each window, significantly enhancing computational efficiency. To further optimize this process, one might consider replacing standard attention with flash attention, which has proven to be more efficient in language models. However, a direct substitution is ineffective. Flash attention is designed for long sequences, whereas window attention deals with shorter sequences but must handle numerous of them in parallel. In this report, we present an optimized solution called Flash Window Attention, tailored specifically for window attention. Flash Window Attention improves attention computation efficiency by up to 300% and enhances end-to-end runtime efficiency by up to 30%. Our code is available online.
Mellum: Production-Grade in-IDE Contextual Code Completion with Multi-File Project Understanding
We present the Mellum models family, open-weight code completion models designed for interactive use in JetBrains IDEs. Mellums have 4B parameters, adopt a Llama-style architecture, and are pre-trained on ~4T tokens of permissively licensed, multi-language code. Our studies show that (i) careful data curation and staged training significantly improve the model's quality, (ii) editor-critical capabilities such as context packing are necessary for high-quality suggestions, and (iii) a compact, task-focused model can meet the cost and latency constraints of interactive completion. In the paper, we describe an end-to-end industrial pipeline for producing contextualized in-editor completion: disciplined data governance, multi-stage training that includes fill-in-the-middle and project context via supervised fine-tuning, and alignment via direct preference optimization using feedback from real-world scenarios. Our quality evaluations include both large-scale offline benchmarks and online telemetry from production deployments in JetBrains IDEs. Mellums are released under the Apache-2.0 license on HuggingFace, with a public model card providing a reproducible reference for practitioners. Our experience offers a pragmatic blueprint for taking a focused, open model from a research prototype to at scale production for hundreds of thousands of users.
semi-PD: Towards Efficient LLM Serving via Phase-Wise Disaggregated Computation and Unified Storage
Existing large language model (LLM) serving systems fall into two categories: 1) a unified system where prefill phase and decode phase are co-located on the same GPU, sharing the unified computational resource and storage, and 2) a disaggregated system where the two phases are disaggregated to different GPUs. The design of the disaggregated system addresses the latency interference and sophisticated scheduling issues in the unified system but leads to storage challenges including 1) replicated weights for both phases that prevent flexible deployment, 2) KV cache transfer overhead between the two phases, 3) storage imbalance that causes substantial wasted space of the GPU capacity, and 4) suboptimal resource adjustment arising from the difficulties in migrating KV cache. Such storage inefficiency delivers poor serving performance under high request rates. In this paper, we identify that the advantage of the disaggregated system lies in the disaggregated computation, i.e., partitioning the computational resource to enable the asynchronous computation of two phases. Thus, we propose a novel LLM serving system, semi-PD, characterized by disaggregated computation and unified storage. In semi-PD, we introduce a computation resource controller to achieve disaggregated computation at the streaming multi-processor (SM) level, and a unified memory manager to manage the asynchronous memory access from both phases. semi-PD has a low-overhead resource adjustment mechanism between the two phases, and a service-level objective (SLO) aware dynamic partitioning algorithm to optimize the SLO attainment. Compared to state-of-the-art systems, semi-PD maintains lower latency at higher request rates, reducing the average end-to-end latency per request by 1.27-2.58x on DeepSeek series models, and serves 1.55-1.72x more requests adhering to latency constraints on Llama series models.
UbiMoE: A Ubiquitous Mixture-of-Experts Vision Transformer Accelerator With Hybrid Computation Pattern on FPGA
Compared to traditional Vision Transformers (ViT), Mixture-of-Experts Vision Transformers (MoE-ViT) are introduced to scale model size without a proportional increase in computational complexity, making them a new research focus. Given the high performance and reconfigurability, FPGA-based accelerators for MoE-ViT emerge, delivering substantial gains over general-purpose processors. However, existing accelerators often fall short of fully exploring the design space, leading to suboptimal trade-offs between resource utilization and performance. To overcome this problem, we introduce UbiMoE, a novel end-to-end FPGA accelerator tailored for MoE-ViT. Leveraging the unique computational and memory access patterns of MoE-ViTs, we develop a latency-optimized streaming attention kernel and a resource-efficient reusable linear kernel, effectively balancing performance and resource consumption. To further enhance design efficiency, we propose a two-stage heuristic search algorithm that optimally tunes hardware parameters for various FPGA resource constraints. Compared to state-of-the-art (SOTA) FPGA designs, UbiMoE achieves 1.34x and 3.35x throughput improvements for MoE-ViT on Xilinx ZCU102 and Alveo U280 platforms, respectively, while enhancing energy efficiency by 1.75x and 1.54x. Our implementation is available at https://github.com/DJ000011/UbiMoE.
Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters while maintaining a fixed computational cost. The development of large MoE models in the distributed scenario encounters the problem of large communication overhead. The inter-device communication of a MoE layer can occupy 47% time of the entire model execution with popular models and frameworks. Therefore, existing methods suggest the communication in a MoE layer to be pipelined with the computation for overlapping. However, these coarse grained overlapping schemes introduce a notable impairment of computational efficiency and the latency concealing is sub-optimal. To this end, we present COMET, an optimized MoE system with fine-grained communication-computation overlapping. Leveraging data dependency analysis and task rescheduling, COMET achieves precise fine-grained overlapping of communication and computation. Through adaptive workload assignment, COMET effectively eliminates fine-grained communication bottlenecks and enhances its adaptability across various scenarios. Our evaluation shows that COMET accelerates the execution of a single MoE layer by 1.96times and for end-to-end execution, COMET delivers a 1.71times speedup on average. COMET has been adopted in the production environment of clusters with ten-thousand-scale of GPUs, achieving savings of millions of GPU hours.
ECNet: Effective Controllable Text-to-Image Diffusion Models
The conditional text-to-image diffusion models have garnered significant attention in recent years. However, the precision of these models is often compromised mainly for two reasons, ambiguous condition input and inadequate condition guidance over single denoising loss. To address the challenges, we introduce two innovative solutions. Firstly, we propose a Spatial Guidance Injector (SGI) which enhances conditional detail by encoding text inputs with precise annotation information. This method directly tackles the issue of ambiguous control inputs by providing clear, annotated guidance to the model. Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss (DCL), which applies supervision on the denoised latent code at any given time step. This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output. The combination of SGI and DCL results in our Effective Controllable Network (ECNet), which offers a more accurate controllable end-to-end text-to-image generation framework with a more precise conditioning input and stronger controllable supervision. We validate our approach through extensive experiments on generation under various conditions, such as human body skeletons, facial landmarks, and sketches of general objects. The results consistently demonstrate that our method significantly enhances the controllability and robustness of the generated images, outperforming existing state-of-the-art controllable text-to-image models.
HumanMAC: Masked Motion Completion for Human Motion Prediction
Human motion prediction is a classical problem in computer vision and computer graphics, which has a wide range of practical applications. Previous effects achieve great empirical performance based on an encoding-decoding style. The methods of this style work by first encoding previous motions to latent representations and then decoding the latent representations into predicted motions. However, in practice, they are still unsatisfactory due to several issues, including complicated loss constraints, cumbersome training processes, and scarce switch of different categories of motions in prediction. In this paper, to address the above issues, we jump out of the foregoing style and propose a novel framework from a new perspective. Specifically, our framework works in a masked completion fashion. In the training stage, we learn a motion diffusion model that generates motions from random noise. In the inference stage, with a denoising procedure, we make motion prediction conditioning on observed motions to output more continuous and controllable predictions. The proposed framework enjoys promising algorithmic properties, which only needs one loss in optimization and is trained in an end-to-end manner. Additionally, it accomplishes the switch of different categories of motions effectively, which is significant in realistic tasks, e.g., the animation task. Comprehensive experiments on benchmarks confirm the superiority of the proposed framework. The project page is available at https://lhchen.top/Human-MAC.
DSV: Exploiting Dynamic Sparsity to Accelerate Large-Scale Video DiT Training
Diffusion Transformers (DiTs) have shown remarkable performance in modeling and generating high-quality videos. However, the quadratic computational complexity of 3D full attention mechanism presents significant challenges in scaling video DiT training, especially for high-definition and lengthy videos, where attention can dominate up to 95% of the end-to-end time and necessitate specialized communication paradigms to handle large input sizes. This paper introduces DSV, a novel framework designed to accelerate and scale the training of video DiTs by leveraging the inherent dynamic attention sparsity throughout the training process. DSV employs a two-stage training algorithm that exploits sparsity patterns, focusing on critical elements supported by efficient, tailored kernels. To accommodate the new sparsity dimension, we develop a hybrid sparsity-aware context parallelism that effectively scales to large inputs by addressing the heterogeneity of sparsity across attention heads and blocks, resulting in optimized sparse computation and communication. Extensive evaluations demonstrate that DSV achieves up to 3.02x gain in training throughput with nearly no quality degradation.
The Computational and Latency Advantage of Quantum Communication Networks
This article summarises the current status of classical communication networks and identifies some critical open research challenges that can only be solved by leveraging quantum technologies. By now, the main goal of quantum communication networks has been security. However, quantum networks can do more than just exchange secure keys or serve the needs of quantum computers. In fact, the scientific community is still investigating on the possible use cases/benefits that quantum communication networks can bring. Thus, this article aims at pointing out and clearly describing how quantum communication networks can enhance in-network distributed computing and reduce the overall end-to-end latency, beyond the intrinsic limits of classical technologies. Furthermore, we also explain how entanglement can reduce the communication complexity (overhead) that future classical virtualised networks will experience.
Reconstruct Anything Model: a lightweight foundation model for computational imaging
Most existing learning-based methods for solving imaging inverse problems can be roughly divided into two classes: iterative algorithms, such as plug-and-play and diffusion methods, that leverage pretrained denoisers, and unrolled architectures that are trained end-to-end for specific imaging problems. Iterative methods in the first class are computationally costly and often provide suboptimal reconstruction performance, whereas unrolled architectures are generally specific to a single inverse problem and require expensive training. In this work, we propose a novel non-iterative, lightweight architecture that incorporates knowledge about the forward operator (acquisition physics and noise parameters) without relying on unrolling. Our model is trained to solve a wide range of inverse problems beyond denoising, including deblurring, magnetic resonance imaging, computed tomography, inpainting, and super-resolution. The proposed model can be easily adapted to unseen inverse problems or datasets with a few fine-tuning steps (up to a few images) in a self-supervised way, without ground-truth references. Throughout a series of experiments, we demonstrate state-of-the-art performance from medical imaging to low-photon imaging and microscopy.
QOG:Question and Options Generation based on Language Model
Question-Options Generation (QOG) is a task that involves generating a set of question-options pairs given context. This task has various applications, including fine-tuning large models, information retrieval, and automated multiple-choice question generation for education. In this paper, we develop QOG models using three different methods based on fine-tuning sequence-to-sequence language models (LMs). Experiments demonstrate that the end-to-end QOG model is computationally efficient and stable during both training and inference, outperforming other methods. Furthermore, our analysis indicates that our QOG models are competitive on the QOG task compared to the large language model Llama 3-8B.
Population Transformer: Learning Population-level Representations of Neural Activity
We present a self-supervised framework that learns population-level codes for arbitrary ensembles of neural recordings at scale. We address two key challenges in scaling models with neural time-series data: sparse and variable electrode distribution across subjects and datasets. The Population Transformer (PopT) stacks on top of pretrained representations and enhances downstream decoding by enabling learned aggregation of multiple spatially-sparse data channels. The pretrained PopT lowers the amount of data required for downstream decoding experiments, while increasing accuracy, even on held-out subjects and tasks. Compared to end-to-end methods, this approach is computationally lightweight and more interpretable, while still retaining competitive performance. We further show how our framework is generalizable to multiple time-series embeddings and neural data modalities. Beyond decoding, we interpret the pretrained PopT and fine-tuned models to show how they can be used to extract neuroscience insights from massive amounts of data. We release our code as well as a pretrained PopT to enable off-the-shelf improvements in multi-channel intracranial data decoding and interpretability.
Frame-Recurrent Video Super-Resolution
Recent advances in video super-resolution have shown that convolutional neural networks combined with motion compensation are able to merge information from multiple low-resolution (LR) frames to generate high-quality images. Current state-of-the-art methods process a batch of LR frames to generate a single high-resolution (HR) frame and run this scheme in a sliding window fashion over the entire video, effectively treating the problem as a large number of separate multi-frame super-resolution tasks. This approach has two main weaknesses: 1) Each input frame is processed and warped multiple times, increasing the computational cost, and 2) each output frame is estimated independently conditioned on the input frames, limiting the system's ability to produce temporally consistent results. In this work, we propose an end-to-end trainable frame-recurrent video super-resolution framework that uses the previously inferred HR estimate to super-resolve the subsequent frame. This naturally encourages temporally consistent results and reduces the computational cost by warping only one image in each step. Furthermore, due to its recurrent nature, the proposed method has the ability to assimilate a large number of previous frames without increased computational demands. Extensive evaluations and comparisons with previous methods validate the strengths of our approach and demonstrate that the proposed framework is able to significantly outperform the current state of the art.
Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
Saying No is An Art: Contextualized Fallback Responses for Unanswerable Dialogue Queries
Despite end-to-end neural systems making significant progress in the last decade for task-oriented as well as chit-chat based dialogue systems, most dialogue systems rely on hybrid approaches which use a combination of rule-based, retrieval and generative approaches for generating a set of ranked responses. Such dialogue systems need to rely on a fallback mechanism to respond to out-of-domain or novel user queries which are not answerable within the scope of the dialog system. While, dialog systems today rely on static and unnatural responses like "I don't know the answer to that question" or "I'm not sure about that", we design a neural approach which generates responses which are contextually aware with the user query as well as say no to the user. Such customized responses provide paraphrasing ability and contextualization as well as improve the interaction with the user and reduce dialogue monotonicity. Our simple approach makes use of rules over dependency parses and a text-to-text transformer fine-tuned on synthetic data of question-response pairs generating highly relevant, grammatical as well as diverse questions. We perform automatic and manual evaluations to demonstrate the efficacy of the system.
A Wavenet for Speech Denoising
Currently, most speech processing techniques use magnitude spectrograms as front-end and are therefore by default discarding part of the signal: the phase. In order to overcome this limitation, we propose an end-to-end learning method for speech denoising based on Wavenet. The proposed model adaptation retains Wavenet's powerful acoustic modeling capabilities, while significantly reducing its time-complexity by eliminating its autoregressive nature. Specifically, the model makes use of non-causal, dilated convolutions and predicts target fields instead of a single target sample. The discriminative adaptation of the model we propose, learns in a supervised fashion via minimizing a regression loss. These modifications make the model highly parallelizable during both training and inference. Both computational and perceptual evaluations indicate that the proposed method is preferred to Wiener filtering, a common method based on processing the magnitude spectrogram.
Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention
Long-context modeling is crucial for next-generation language models, yet the high computational cost of standard attention mechanisms poses significant computational challenges. Sparse attention offers a promising direction for improving efficiency while maintaining model capabilities. We present NSA, a Natively trainable Sparse Attention mechanism that integrates algorithmic innovations with hardware-aligned optimizations to achieve efficient long-context modeling. NSA employs a dynamic hierarchical sparse strategy, combining coarse-grained token compression with fine-grained token selection to preserve both global context awareness and local precision. Our approach advances sparse attention design with two key innovations: (1) We achieve substantial speedups through arithmetic intensity-balanced algorithm design, with implementation optimizations for modern hardware. (2) We enable end-to-end training, reducing pretraining computation without sacrificing model performance. As shown in Figure 1, experiments show the model pretrained with NSA maintains or exceeds Full Attention models across general benchmarks, long-context tasks, and instruction-based reasoning. Meanwhile, NSA achieves substantial speedups over Full Attention on 64k-length sequences across decoding, forward propagation, and backward propagation, validating its efficiency throughout the model lifecycle.
LumiTex: Towards High-Fidelity PBR Texture Generation with Illumination Context
Physically-based rendering (PBR) provides a principled standard for realistic material-lighting interactions in computer graphics. Despite recent advances in generating PBR textures, existing methods fail to address two fundamental challenges: 1) materials decomposition from image prompts under limited illumination cues, and 2) seamless and view-consistent texture completion. To this end, we propose LumiTex, an end-to-end framework that comprises three key components: (1) a multi-branch generation scheme that disentangles albedo and metallic-roughness under shared illumination priors for robust material understanding, (2) a lighting-aware material attention mechanism that injects illumination context into the decoding process for physically grounded generation of albedo, metallic, and roughness maps, and (3) a geometry-guided inpainting module based on a large view synthesis model that enriches texture coverage and ensures seamless, view-consistent UV completion. Extensive experiments demonstrate that LumiTex achieves state-of-the-art performance in texture quality, surpassing both existing open-source and commercial methods.
PixelFlow: Pixel-Space Generative Models with Flow
We present PixelFlow, a family of image generation models that operate directly in the raw pixel space, in contrast to the predominant latent-space models. This approach simplifies the image generation process by eliminating the need for a pre-trained Variational Autoencoder (VAE) and enabling the whole model end-to-end trainable. Through efficient cascade flow modeling, PixelFlow achieves affordable computation cost in pixel space. It achieves an FID of 1.98 on 256times256 ImageNet class-conditional image generation benchmark. The qualitative text-to-image results demonstrate that PixelFlow excels in image quality, artistry, and semantic control. We hope this new paradigm will inspire and open up new opportunities for next-generation visual generation models. Code and models are available at https://github.com/ShoufaChen/PixelFlow.
YOLOv12: Attention-Centric Real-Time Object Detectors
Enhancing the network architecture of the YOLO framework has been crucial for a long time, but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms. YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters. More comparisons are shown in Figure 1.
Temporal Prompting Matters: Rethinking Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment the object referred to by the query sentence in the video. Most existing methods require end-to-end training with dense mask annotations, which could be computation-consuming and less scalable. In this work, we rethink the RVOS problem and aim to investigate the key to this task. Based on existing foundation segmentation models, we decompose the RVOS task into referring, video, and segmentation factors, and propose a Temporal Prompt Generation and Selection (Tenet) framework to address the referring and video factors while leaving the segmentation problem to foundation models. To efficiently adapt image-based foundation segmentation models to referring video object segmentation, we leverage off-the-shelf object detectors and trackers to produce temporal prompts associated with the referring sentence. While high-quality temporal prompts could be produced, they can not be easily identified from confidence scores. To tackle this issue, we propose Prompt Preference Learning to evaluate the quality of the produced temporal prompts. By taking such prompts to instruct image-based foundation segmentation models, we would be able to produce high-quality masks for the referred object, enabling efficient model adaptation to referring video object segmentation. Experiments on RVOS benchmarks demonstrate the effectiveness of the Tenet framework.
QuantV2X: A Fully Quantized Multi-Agent System for Cooperative Perception
Cooperative perception through Vehicle-to-Everything (V2X) communication offers significant potential for enhancing vehicle perception by mitigating occlusions and expanding the field of view. However, past research has predominantly focused on improving accuracy metrics without addressing the crucial system-level considerations of efficiency, latency, and real-world deployability. Noticeably, most existing systems rely on full-precision models, which incur high computational and transmission costs, making them impractical for real-time operation in resource-constrained environments. In this paper, we introduce QuantV2X, the first fully quantized multi-agent system designed specifically for efficient and scalable deployment of multi-modal, multi-agent V2X cooperative perception. QuantV2X introduces a unified end-to-end quantization strategy across both neural network models and transmitted message representations that simultaneously reduces computational load and transmission bandwidth. Remarkably, despite operating under low-bit constraints, QuantV2X achieves accuracy comparable to full-precision systems. More importantly, when evaluated under deployment-oriented metrics, QuantV2X reduces system-level latency by 3.2times and achieves a +9.5 improvement in mAP30 over full-precision baselines. Furthermore, QuantV2X scales more effectively, enabling larger and more capable models to fit within strict memory budgets. These results highlight the viability of a fully quantized multi-agent intermediate fusion system for real-world deployment. The system will be publicly released to promote research in this field: https://github.com/ucla-mobility/QuantV2X.
GroPrompt: Efficient Grounded Prompting and Adaptation for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment the object referred to by the query sentence throughout the entire video. Most existing methods require end-to-end training with dense mask annotations, which could be computation-consuming and less scalable. In this work, we aim to efficiently adapt foundation segmentation models for addressing RVOS from weak supervision with the proposed Grounded Prompting (GroPrompt) framework. More specifically, we propose Text-Aware Prompt Contrastive Learning (TAP-CL) to enhance the association between the position prompts and the referring sentences with only box supervisions, including Text-Contrastive Prompt Learning (TextCon) and Modality-Contrastive Prompt Learning (ModalCon) at frame level and video level, respectively. With the proposed TAP-CL, our GroPrompt framework can generate temporal-consistent yet text-aware position prompts describing locations and movements for the referred object from the video. The experimental results in the standard RVOS benchmarks (Ref-YouTube-VOS, Ref-DAVIS17, A2D-Sentences, and JHMDB-Sentences) demonstrate the competitive performance of our proposed GroPrompt framework given only bounding box weak supervisions.
Multi-rate adaptive transform coding for video compression
Contemporary lossy image and video coding standards rely on transform coding, the process through which pixels are mapped to an alternative representation to facilitate efficient data compression. Despite impressive performance of end-to-end optimized compression with deep neural networks, the high computational and space demands of these models has prevented them from superseding the relatively simple transform coding found in conventional video codecs. In this study, we propose learned transforms and entropy coding that may either serve as (non)linear drop-in replacements, or enhancements for linear transforms in existing codecs. These transforms can be multi-rate, allowing a single model to operate along the entire rate-distortion curve. To demonstrate the utility of our framework, we augmented the DCT with learned quantization matrices and adaptive entropy coding to compress intra-frame AV1 block prediction residuals. We report substantial BD-rate and perceptual quality improvements over more complex nonlinear transforms at a fraction of the computational cost.
Swin-X2S: Reconstructing 3D Shape from 2D Biplanar X-ray with Swin Transformers
The conversion from 2D X-ray to 3D shape holds significant potential for improving diagnostic efficiency and safety. However, existing reconstruction methods often rely on hand-crafted features, manual intervention, and prior knowledge, resulting in unstable shape errors and additional processing costs. In this paper, we introduce Swin-X2S, an end-to-end deep learning method for directly reconstructing 3D segmentation and labeling from 2D biplanar orthogonal X-ray images. Swin-X2S employs an encoder-decoder architecture: the encoder leverages 2D Swin Transformer for X-ray information extraction, while the decoder employs 3D convolution with cross-attention to integrate structural features from orthogonal views. A dimension-expanding module is introduced to bridge the encoder and decoder, ensuring a smooth conversion from 2D pixels to 3D voxels. We evaluate proposed method through extensive qualitative and quantitative experiments across nine publicly available datasets covering four anatomies (femur, hip, spine, and rib), with a total of 54 categories. Significant improvements over previous methods have been observed not only in the segmentation and labeling metrics but also in the clinically relevant parameters that are of primary concern in practical applications, which demonstrates the promise of Swin-X2S to provide an effective option for anatomical shape reconstruction in clinical scenarios. Code implementation is available at: https://github.com/liukuan5625/Swin-X2S.
