- Efficient Adaptive Optimization via Subset-Norm and Subspace-Momentum: Fast, Memory-Reduced Training with Convergence Guarantees We introduce two complementary techniques for efficient adaptive optimization that reduce memory requirements while accelerating training of large-scale neural networks. The first technique, Subset-Norm adaptive step size, generalizes AdaGrad-Norm and AdaGrad(-Coordinate) by reducing the second moment term's memory footprint from O(d) to O(d) through step-size sharing, where d is the model size. For non-convex smooth objectives under coordinate-wise sub-gaussian gradient noise, we prove a noise-adapted high-probability convergence guarantee showing improved dimensional dependence over existing methods. Our second technique, Subspace-Momentum, reduces the momentum state's memory footprint by operating in a low-dimensional subspace while applying standard SGD in the orthogonal complement. We establish high-probability convergence rates under similar relaxed assumptions. Empirical evaluation on LLaMA models from 60M to 1B parameters demonstrates the effectiveness of our methods, where combining subset-norm with subspace-momentum achieves Adam's validation perplexity in approximately half the training tokens (6.8B vs 13.1B) while using only 20% of the Adam's optimizer-states memory footprint and requiring minimal additional hyperparameter tuning. 2 authors · Nov 11, 2024
- AdaGrad Meets Muon: Adaptive Stepsizes for Orthogonal Updates The recently proposed Muon optimizer updates weight matrices via orthogonalized momentum and has demonstrated strong empirical success in large language model training. However, it remains unclear how to determine the learning rates for such orthogonalized updates. AdaGrad, by contrast, is a widely used adaptive method that scales stochastic gradients by accumulated past gradients. We propose a new algorithm, AdaGO, which combines a norm-based AdaGrad-type stepsize with an orthogonalized update direction, bringing together the benefits of both approaches. Unlike other adaptive variants of Muon, AdaGO preserves the orthogonality of the update direction, which can be interpreted as a spectral descent direction, while adapting the stepsizes to the optimization landscape by scaling the direction with accumulated past gradient norms. The implementation of AdaGO requires only minimal modification to Muon, with a single additional scalar variable, the accumulated squared gradient norms, to be computed, making it computationally and memory efficient. Optimal theoretical convergence rates are established for nonconvex functions in both stochastic and deterministic settings under standard smoothness and unbiased bounded-variance noise assumptions. Empirical results on CIFAR-10 classification and function regression demonstrate that AdaGO outperforms Muon and Adam. 3 authors · Sep 2
- AdAdaGrad: Adaptive Batch Size Schemes for Adaptive Gradient Methods The choice of batch sizes in stochastic gradient optimizers is critical for model training. However, the practice of varying batch sizes throughout the training process is less explored compared to other hyperparameters. We investigate adaptive batch size strategies derived from adaptive sampling methods, traditionally applied only in stochastic gradient descent. Given the significant interplay between learning rates and batch sizes, and considering the prevalence of adaptive gradient methods in deep learning, we emphasize the need for adaptive batch size strategies in these contexts. We introduce AdAdaGrad and its scalar variant AdAdaGradNorm, which incrementally increase batch sizes during training, while model updates are performed using AdaGrad and AdaGradNorm. We prove that AdaGradNorm converges with high probability at a rate of O(1/K) for finding a first-order stationary point of smooth nonconvex functions within K iterations. AdaGrad also demonstrates similar convergence properties when integrated with a novel coordinate-wise variant of our adaptive batch size strategies. Our theoretical claims are supported by numerical experiments on various image classification tasks, highlighting the enhanced adaptability of progressive batching protocols in deep learning and the potential of such adaptive batch size strategies with adaptive gradient optimizers in large-scale model training. 3 authors · Feb 17, 2024