from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments from datasets import load_dataset # Load dataset dataset = load_dataset("wikitext", "wikitext-2-raw-v1") # Load tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("gpt2") # Tokenize dataset def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # Training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=4, save_steps=10_000, save_total_limit=2, logging_dir="./logs", ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["validation"], ) # Train the model trainer.train()