|
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments |
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
dataset = load_dataset("wikitext", "wikitext-2-raw-v1") |
|
|
|
|
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
|
|
|
|
|
|
|
def tokenize_function(examples): |
|
|
return tokenizer(examples["text"], padding="max_length", truncation=True) |
|
|
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True) |
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
|
output_dir="./results", |
|
|
num_train_epochs=3, |
|
|
per_device_train_batch_size=4, |
|
|
save_steps=10_000, |
|
|
save_total_limit=2, |
|
|
logging_dir="./logs", |
|
|
) |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=tokenized_datasets["train"], |
|
|
eval_dataset=tokenized_datasets["validation"], |
|
|
) |
|
|
|
|
|
|
|
|
trainer.train() |