Duplicate from autogluon/chronos_datasets
Browse filesCo-authored-by: Oleksandr Shchur <[email protected]>
This view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +55 -0
- README.md +1771 -0
- dominick/train-00000-of-00001.parquet +3 -0
- electricity_15min/train-00000-of-00001.parquet +3 -0
- ercot/train-00000-of-00001.parquet +3 -0
- exchange_rate/train-00000-of-00001.parquet +3 -0
- m4_daily/train-00000-of-00001.parquet +3 -0
- m4_hourly/train-00000-of-00001.parquet +3 -0
- m4_monthly/train-00000-of-00001.parquet +3 -0
- m4_quarterly/train-00000-of-00001.parquet +3 -0
- m4_weekly/train-00000-of-00001.parquet +3 -0
- m4_yearly/train-00000-of-00001.parquet +3 -0
- m5/train-00000-of-00001.parquet +3 -0
- mexico_city_bikes/train-00000-of-00001.parquet +3 -0
- monash_australian_electricity/train-00000-of-00001.parquet +3 -0
- monash_car_parts/train-00000-of-00001.parquet +3 -0
- monash_cif_2016/train-00000-of-00001.parquet +3 -0
- monash_covid_deaths/train-00000-of-00001.parquet +3 -0
- monash_electricity_hourly/train-00000-of-00001.parquet +3 -0
- monash_electricity_weekly/train-00000-of-00001.parquet +3 -0
- monash_fred_md/train-00000-of-00001.parquet +3 -0
- monash_hospital/train-00000-of-00001.parquet +3 -0
- monash_kdd_cup_2018/train-00000-of-00001.parquet +3 -0
- monash_london_smart_meters/train-00000-of-00003.parquet +3 -0
- monash_london_smart_meters/train-00001-of-00003.parquet +3 -0
- monash_london_smart_meters/train-00002-of-00003.parquet +3 -0
- monash_m1_monthly/train-00000-of-00001.parquet +3 -0
- monash_m1_quarterly/train-00000-of-00001.parquet +3 -0
- monash_m1_yearly/train-00000-of-00001.parquet +3 -0
- monash_m3_monthly/train-00000-of-00001.parquet +3 -0
- monash_m3_quarterly/train-00000-of-00001.parquet +3 -0
- monash_m3_yearly/train-00000-of-00001.parquet +3 -0
- monash_nn5_weekly/train-00000-of-00001.parquet +3 -0
- monash_pedestrian_counts/train-00000-of-00001.parquet +3 -0
- monash_rideshare/train-00000-of-00001.parquet +3 -0
- monash_saugeenday/train-00000-of-00001.parquet +3 -0
- monash_temperature_rain/train-00000-of-00001.parquet +3 -0
- monash_tourism_monthly/train-00000-of-00001.parquet +3 -0
- monash_tourism_quarterly/train-00000-of-00001.parquet +3 -0
- monash_tourism_yearly/train-00000-of-00001.parquet +3 -0
- monash_traffic/train-00000-of-00001.parquet +3 -0
- monash_weather/train-00000-of-00001.parquet +3 -0
- nn5/train-00000-of-00001.parquet +3 -0
- solar/train-00000-of-00009.parquet +3 -0
- solar/train-00001-of-00009.parquet +3 -0
- solar/train-00002-of-00009.parquet +3 -0
- solar/train-00003-of-00009.parquet +3 -0
- solar/train-00004-of-00009.parquet +3 -0
- solar/train-00005-of-00009.parquet +3 -0
- solar/train-00006-of-00009.parquet +3 -0
.gitattributes
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
# Audio files - uncompressed
|
| 38 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
# Audio files - compressed
|
| 42 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
# Image files - uncompressed
|
| 48 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
# Image files - compressed
|
| 53 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,1771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
annotations_creators:
|
| 3 |
+
- no-annotation
|
| 4 |
+
license: other
|
| 5 |
+
source_datasets:
|
| 6 |
+
- original
|
| 7 |
+
task_categories:
|
| 8 |
+
- time-series-forecasting
|
| 9 |
+
task_ids:
|
| 10 |
+
- univariate-time-series-forecasting
|
| 11 |
+
- multivariate-time-series-forecasting
|
| 12 |
+
pretty_name: Chronos datasets
|
| 13 |
+
dataset_info:
|
| 14 |
+
- config_name: dominick
|
| 15 |
+
features:
|
| 16 |
+
- name: id
|
| 17 |
+
dtype: string
|
| 18 |
+
- name: timestamp
|
| 19 |
+
sequence: timestamp[ms]
|
| 20 |
+
- name: target
|
| 21 |
+
sequence: float64
|
| 22 |
+
- name: im_0
|
| 23 |
+
dtype: int64
|
| 24 |
+
splits:
|
| 25 |
+
- name: train
|
| 26 |
+
num_bytes: 477140250
|
| 27 |
+
num_examples: 100014
|
| 28 |
+
download_size: 60199910
|
| 29 |
+
dataset_size: 477140250
|
| 30 |
+
homepage: https://www.chicagobooth.edu/research/kilts/research-data/dominicks
|
| 31 |
+
- config_name: electricity_15min
|
| 32 |
+
features:
|
| 33 |
+
- name: id
|
| 34 |
+
dtype: string
|
| 35 |
+
- name: timestamp
|
| 36 |
+
sequence: timestamp[ms]
|
| 37 |
+
- name: consumption_kW
|
| 38 |
+
sequence: float64
|
| 39 |
+
splits:
|
| 40 |
+
- name: train
|
| 41 |
+
num_bytes: 670989988
|
| 42 |
+
num_examples: 370
|
| 43 |
+
download_size: 284497403
|
| 44 |
+
dataset_size: 670989988
|
| 45 |
+
license: CC BY 4.0
|
| 46 |
+
homepage: https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
|
| 47 |
+
- config_name: ercot
|
| 48 |
+
features:
|
| 49 |
+
- name: id
|
| 50 |
+
dtype: string
|
| 51 |
+
- name: timestamp
|
| 52 |
+
sequence: timestamp[ns]
|
| 53 |
+
- name: target
|
| 54 |
+
sequence: float32
|
| 55 |
+
splits:
|
| 56 |
+
- name: train
|
| 57 |
+
num_examples: 8
|
| 58 |
+
download_size: 14504261
|
| 59 |
+
- config_name: exchange_rate
|
| 60 |
+
features:
|
| 61 |
+
- name: id
|
| 62 |
+
dtype: string
|
| 63 |
+
- name: timestamp
|
| 64 |
+
sequence: timestamp[ms]
|
| 65 |
+
- name: target
|
| 66 |
+
sequence: float32
|
| 67 |
+
splits:
|
| 68 |
+
- name: train
|
| 69 |
+
num_examples: 8
|
| 70 |
+
download_size: 401501
|
| 71 |
+
license: MIT
|
| 72 |
+
homepage: https://github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
|
| 73 |
+
- config_name: m4_daily
|
| 74 |
+
features:
|
| 75 |
+
- name: id
|
| 76 |
+
dtype: string
|
| 77 |
+
- name: timestamp
|
| 78 |
+
sequence: timestamp[ms]
|
| 79 |
+
- name: target
|
| 80 |
+
sequence: float64
|
| 81 |
+
- name: category
|
| 82 |
+
dtype: string
|
| 83 |
+
splits:
|
| 84 |
+
- name: train
|
| 85 |
+
num_bytes: 160504176
|
| 86 |
+
num_examples: 4227
|
| 87 |
+
download_size: 65546675
|
| 88 |
+
dataset_size: 160504176
|
| 89 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 90 |
+
- config_name: m4_hourly
|
| 91 |
+
features:
|
| 92 |
+
- name: id
|
| 93 |
+
dtype: string
|
| 94 |
+
- name: timestamp
|
| 95 |
+
sequence: timestamp[ms]
|
| 96 |
+
- name: target
|
| 97 |
+
sequence: float64
|
| 98 |
+
- name: category
|
| 99 |
+
dtype: string
|
| 100 |
+
splits:
|
| 101 |
+
- name: train
|
| 102 |
+
num_bytes: 5985544
|
| 103 |
+
num_examples: 414
|
| 104 |
+
download_size: 1336971
|
| 105 |
+
dataset_size: 5985544
|
| 106 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 107 |
+
- config_name: m4_monthly
|
| 108 |
+
features:
|
| 109 |
+
- name: id
|
| 110 |
+
dtype: string
|
| 111 |
+
- name: timestamp
|
| 112 |
+
sequence: timestamp[ms]
|
| 113 |
+
- name: target
|
| 114 |
+
sequence: float64
|
| 115 |
+
- name: category
|
| 116 |
+
dtype: string
|
| 117 |
+
splits:
|
| 118 |
+
- name: train
|
| 119 |
+
num_bytes: 181372969
|
| 120 |
+
num_examples: 48000
|
| 121 |
+
download_size: 52772258
|
| 122 |
+
dataset_size: 181372969
|
| 123 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 124 |
+
- config_name: m4_quarterly
|
| 125 |
+
features:
|
| 126 |
+
- name: id
|
| 127 |
+
dtype: string
|
| 128 |
+
- name: timestamp
|
| 129 |
+
sequence: timestamp[ms]
|
| 130 |
+
- name: target
|
| 131 |
+
sequence: float64
|
| 132 |
+
- name: category
|
| 133 |
+
dtype: string
|
| 134 |
+
splits:
|
| 135 |
+
- name: train
|
| 136 |
+
num_bytes: 39205397
|
| 137 |
+
num_examples: 24000
|
| 138 |
+
download_size: 13422579
|
| 139 |
+
dataset_size: 39205397
|
| 140 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 141 |
+
- config_name: m4_weekly
|
| 142 |
+
features:
|
| 143 |
+
- name: id
|
| 144 |
+
dtype: string
|
| 145 |
+
- name: timestamp
|
| 146 |
+
sequence: timestamp[ms]
|
| 147 |
+
- name: target
|
| 148 |
+
sequence: float64
|
| 149 |
+
- name: category
|
| 150 |
+
dtype: string
|
| 151 |
+
splits:
|
| 152 |
+
- name: train
|
| 153 |
+
num_bytes: 5955806
|
| 154 |
+
num_examples: 359
|
| 155 |
+
download_size: 2556691
|
| 156 |
+
dataset_size: 5955806
|
| 157 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 158 |
+
- config_name: m4_yearly
|
| 159 |
+
features:
|
| 160 |
+
- name: id
|
| 161 |
+
dtype: string
|
| 162 |
+
- name: timestamp
|
| 163 |
+
sequence: timestamp[ms]
|
| 164 |
+
- name: target
|
| 165 |
+
sequence: float64
|
| 166 |
+
- name: category
|
| 167 |
+
dtype: string
|
| 168 |
+
splits:
|
| 169 |
+
- name: train
|
| 170 |
+
num_bytes: 14410042
|
| 171 |
+
num_examples: 23000
|
| 172 |
+
download_size: 5488601
|
| 173 |
+
dataset_size: 14410042
|
| 174 |
+
homepage: https://github.com/Mcompetitions/M4-methods
|
| 175 |
+
- config_name: m5
|
| 176 |
+
features:
|
| 177 |
+
- name: id
|
| 178 |
+
dtype: string
|
| 179 |
+
- name: timestamp
|
| 180 |
+
sequence: timestamp[ms]
|
| 181 |
+
- name: item_id
|
| 182 |
+
dtype: string
|
| 183 |
+
- name: target
|
| 184 |
+
sequence: float32
|
| 185 |
+
- name: dept_id
|
| 186 |
+
dtype: string
|
| 187 |
+
- name: cat_id
|
| 188 |
+
dtype: string
|
| 189 |
+
- name: store_id
|
| 190 |
+
dtype: string
|
| 191 |
+
- name: state_id
|
| 192 |
+
dtype: string
|
| 193 |
+
splits:
|
| 194 |
+
- name: train
|
| 195 |
+
num_bytes: 574062630
|
| 196 |
+
num_examples: 30490
|
| 197 |
+
download_size: 78063286
|
| 198 |
+
dataset_size: 574062630
|
| 199 |
+
homepage: https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules
|
| 200 |
+
- config_name: mexico_city_bikes
|
| 201 |
+
features:
|
| 202 |
+
- name: id
|
| 203 |
+
dtype: string
|
| 204 |
+
- name: timestamp
|
| 205 |
+
sequence: timestamp[ms]
|
| 206 |
+
- name: target
|
| 207 |
+
sequence: float64
|
| 208 |
+
splits:
|
| 209 |
+
- name: train
|
| 210 |
+
num_bytes: 618999406
|
| 211 |
+
num_examples: 494
|
| 212 |
+
download_size: 103206946
|
| 213 |
+
dataset_size: 618999406
|
| 214 |
+
homepage: https://ecobici.cdmx.gob.mx/en/open-data/
|
| 215 |
+
- config_name: monash_australian_electricity
|
| 216 |
+
features:
|
| 217 |
+
- name: id
|
| 218 |
+
dtype: string
|
| 219 |
+
- name: timestamp
|
| 220 |
+
sequence: timestamp[ms]
|
| 221 |
+
- name: target
|
| 222 |
+
sequence: float64
|
| 223 |
+
splits:
|
| 224 |
+
- name: train
|
| 225 |
+
num_bytes: 18484319
|
| 226 |
+
num_examples: 5
|
| 227 |
+
download_size: 16856156
|
| 228 |
+
dataset_size: 18484319
|
| 229 |
+
license: CC BY 4.0
|
| 230 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 231 |
+
- config_name: monash_car_parts
|
| 232 |
+
features:
|
| 233 |
+
- name: id
|
| 234 |
+
dtype: string
|
| 235 |
+
- name: timestamp
|
| 236 |
+
sequence: timestamp[ms]
|
| 237 |
+
- name: target
|
| 238 |
+
sequence: float64
|
| 239 |
+
splits:
|
| 240 |
+
- name: train
|
| 241 |
+
num_bytes: 2232790
|
| 242 |
+
num_examples: 2674
|
| 243 |
+
download_size: 70278
|
| 244 |
+
dataset_size: 2232790
|
| 245 |
+
license: CC BY 4.0
|
| 246 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 247 |
+
- config_name: monash_cif_2016
|
| 248 |
+
features:
|
| 249 |
+
- name: id
|
| 250 |
+
dtype: string
|
| 251 |
+
- name: timestamp
|
| 252 |
+
sequence: timestamp[ms]
|
| 253 |
+
- name: target
|
| 254 |
+
sequence: float64
|
| 255 |
+
splits:
|
| 256 |
+
- name: train
|
| 257 |
+
num_bytes: 115096
|
| 258 |
+
num_examples: 72
|
| 259 |
+
download_size: 70876
|
| 260 |
+
dataset_size: 115096
|
| 261 |
+
license: CC BY 4.0
|
| 262 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 263 |
+
- config_name: monash_covid_deaths
|
| 264 |
+
features:
|
| 265 |
+
- name: id
|
| 266 |
+
dtype: string
|
| 267 |
+
- name: timestamp
|
| 268 |
+
sequence: timestamp[ms]
|
| 269 |
+
- name: target
|
| 270 |
+
sequence: float64
|
| 271 |
+
splits:
|
| 272 |
+
- name: train
|
| 273 |
+
num_bytes: 907326
|
| 274 |
+
num_examples: 266
|
| 275 |
+
download_size: 58957
|
| 276 |
+
dataset_size: 907326
|
| 277 |
+
license: CC BY 4.0
|
| 278 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 279 |
+
- config_name: monash_electricity_hourly
|
| 280 |
+
features:
|
| 281 |
+
- name: id
|
| 282 |
+
dtype: string
|
| 283 |
+
- name: timestamp
|
| 284 |
+
sequence: timestamp[ms]
|
| 285 |
+
- name: target
|
| 286 |
+
sequence: float64
|
| 287 |
+
splits:
|
| 288 |
+
- name: train
|
| 289 |
+
num_bytes: 135103443
|
| 290 |
+
num_examples: 321
|
| 291 |
+
download_size: 31139117
|
| 292 |
+
dataset_size: 135103443
|
| 293 |
+
license: CC BY 4.0
|
| 294 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 295 |
+
- config_name: monash_electricity_weekly
|
| 296 |
+
features:
|
| 297 |
+
- name: id
|
| 298 |
+
dtype: string
|
| 299 |
+
- name: timestamp
|
| 300 |
+
sequence: timestamp[ms]
|
| 301 |
+
- name: target
|
| 302 |
+
sequence: float64
|
| 303 |
+
splits:
|
| 304 |
+
- name: train
|
| 305 |
+
num_bytes: 807315
|
| 306 |
+
num_examples: 321
|
| 307 |
+
download_size: 333563
|
| 308 |
+
dataset_size: 807315
|
| 309 |
+
license: CC BY 4.0
|
| 310 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 311 |
+
- config_name: monash_fred_md
|
| 312 |
+
features:
|
| 313 |
+
- name: id
|
| 314 |
+
dtype: string
|
| 315 |
+
- name: timestamp
|
| 316 |
+
sequence: timestamp[ms]
|
| 317 |
+
- name: target
|
| 318 |
+
sequence: float64
|
| 319 |
+
splits:
|
| 320 |
+
- name: train
|
| 321 |
+
num_bytes: 1248369
|
| 322 |
+
num_examples: 107
|
| 323 |
+
download_size: 412207
|
| 324 |
+
dataset_size: 1248369
|
| 325 |
+
license: CC BY 4.0
|
| 326 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 327 |
+
- config_name: monash_hospital
|
| 328 |
+
features:
|
| 329 |
+
- name: id
|
| 330 |
+
dtype: string
|
| 331 |
+
- name: timestamp
|
| 332 |
+
sequence: timestamp[ms]
|
| 333 |
+
- name: target
|
| 334 |
+
sequence: int64
|
| 335 |
+
splits:
|
| 336 |
+
- name: train
|
| 337 |
+
num_examples: 767
|
| 338 |
+
download_size: 117038
|
| 339 |
+
license: CC BY 4.0
|
| 340 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 341 |
+
- config_name: monash_kdd_cup_2018
|
| 342 |
+
features:
|
| 343 |
+
- name: id
|
| 344 |
+
dtype: string
|
| 345 |
+
- name: timestamp
|
| 346 |
+
sequence: timestamp[ms]
|
| 347 |
+
- name: target
|
| 348 |
+
sequence: float64
|
| 349 |
+
- name: city
|
| 350 |
+
dtype: string
|
| 351 |
+
- name: station
|
| 352 |
+
dtype: string
|
| 353 |
+
- name: measurement
|
| 354 |
+
dtype: string
|
| 355 |
+
splits:
|
| 356 |
+
- name: train
|
| 357 |
+
num_bytes: 47091540
|
| 358 |
+
num_examples: 270
|
| 359 |
+
download_size: 8780105
|
| 360 |
+
dataset_size: 47091540
|
| 361 |
+
license: CC BY 4.0
|
| 362 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 363 |
+
- config_name: monash_london_smart_meters
|
| 364 |
+
features:
|
| 365 |
+
- name: id
|
| 366 |
+
dtype: string
|
| 367 |
+
- name: timestamp
|
| 368 |
+
sequence: timestamp[ms]
|
| 369 |
+
- name: target
|
| 370 |
+
sequence: float64
|
| 371 |
+
splits:
|
| 372 |
+
- name: train
|
| 373 |
+
num_bytes: 2664567976
|
| 374 |
+
num_examples: 5560
|
| 375 |
+
download_size: 597389119
|
| 376 |
+
dataset_size: 2664567976
|
| 377 |
+
license: CC BY 4.0
|
| 378 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 379 |
+
- config_name: monash_m1_monthly
|
| 380 |
+
features:
|
| 381 |
+
- name: id
|
| 382 |
+
dtype: string
|
| 383 |
+
- name: timestamp
|
| 384 |
+
sequence: timestamp[ms]
|
| 385 |
+
- name: target
|
| 386 |
+
sequence: float64
|
| 387 |
+
splits:
|
| 388 |
+
- name: train
|
| 389 |
+
num_bytes: 907691
|
| 390 |
+
num_examples: 617
|
| 391 |
+
download_size: 244372
|
| 392 |
+
dataset_size: 907691
|
| 393 |
+
license: CC BY 4.0
|
| 394 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 395 |
+
- config_name: monash_m1_quarterly
|
| 396 |
+
features:
|
| 397 |
+
- name: id
|
| 398 |
+
dtype: string
|
| 399 |
+
- name: timestamp
|
| 400 |
+
sequence: timestamp[ms]
|
| 401 |
+
- name: target
|
| 402 |
+
sequence: float64
|
| 403 |
+
splits:
|
| 404 |
+
- name: train
|
| 405 |
+
num_bytes: 162961
|
| 406 |
+
num_examples: 203
|
| 407 |
+
download_size: 48439
|
| 408 |
+
dataset_size: 162961
|
| 409 |
+
license: CC BY 4.0
|
| 410 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 411 |
+
- config_name: monash_m1_yearly
|
| 412 |
+
features:
|
| 413 |
+
- name: id
|
| 414 |
+
dtype: string
|
| 415 |
+
- name: timestamp
|
| 416 |
+
sequence: timestamp[ms]
|
| 417 |
+
- name: target
|
| 418 |
+
sequence: float64
|
| 419 |
+
splits:
|
| 420 |
+
- name: train
|
| 421 |
+
num_bytes: 75679
|
| 422 |
+
num_examples: 181
|
| 423 |
+
download_size: 30754
|
| 424 |
+
dataset_size: 75679
|
| 425 |
+
license: CC BY 4.0
|
| 426 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 427 |
+
- config_name: monash_m3_monthly
|
| 428 |
+
features:
|
| 429 |
+
- name: id
|
| 430 |
+
dtype: string
|
| 431 |
+
- name: timestamp
|
| 432 |
+
sequence: timestamp[ms]
|
| 433 |
+
- name: target
|
| 434 |
+
sequence: float64
|
| 435 |
+
splits:
|
| 436 |
+
- name: train
|
| 437 |
+
num_bytes: 2708124
|
| 438 |
+
num_examples: 1428
|
| 439 |
+
download_size: 589699
|
| 440 |
+
dataset_size: 2708124
|
| 441 |
+
license: CC BY 4.0
|
| 442 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 443 |
+
- config_name: monash_m3_quarterly
|
| 444 |
+
features:
|
| 445 |
+
- name: id
|
| 446 |
+
dtype: string
|
| 447 |
+
- name: timestamp
|
| 448 |
+
sequence: timestamp[ms]
|
| 449 |
+
- name: target
|
| 450 |
+
sequence: float64
|
| 451 |
+
splits:
|
| 452 |
+
- name: train
|
| 453 |
+
num_bytes: 606428
|
| 454 |
+
num_examples: 756
|
| 455 |
+
download_size: 188543
|
| 456 |
+
dataset_size: 606428
|
| 457 |
+
license: CC BY 4.0
|
| 458 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 459 |
+
- config_name: monash_m3_yearly
|
| 460 |
+
features:
|
| 461 |
+
- name: id
|
| 462 |
+
dtype: string
|
| 463 |
+
- name: timestamp
|
| 464 |
+
sequence: timestamp[ms]
|
| 465 |
+
- name: target
|
| 466 |
+
sequence: float64
|
| 467 |
+
splits:
|
| 468 |
+
- name: train
|
| 469 |
+
num_bytes: 305359
|
| 470 |
+
num_examples: 645
|
| 471 |
+
download_size: 100184
|
| 472 |
+
dataset_size: 305359
|
| 473 |
+
license: CC BY 4.0
|
| 474 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 475 |
+
- config_name: monash_nn5_weekly
|
| 476 |
+
features:
|
| 477 |
+
- name: id
|
| 478 |
+
dtype: string
|
| 479 |
+
- name: timestamp
|
| 480 |
+
sequence: timestamp[ms]
|
| 481 |
+
- name: target
|
| 482 |
+
sequence: float32
|
| 483 |
+
splits:
|
| 484 |
+
- name: train
|
| 485 |
+
num_examples: 111
|
| 486 |
+
download_size: 64620
|
| 487 |
+
license: CC BY 4.0
|
| 488 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 489 |
+
- config_name: monash_pedestrian_counts
|
| 490 |
+
features:
|
| 491 |
+
- name: id
|
| 492 |
+
dtype: string
|
| 493 |
+
- name: timestamp
|
| 494 |
+
sequence: timestamp[ms]
|
| 495 |
+
- name: target
|
| 496 |
+
sequence: int64
|
| 497 |
+
splits:
|
| 498 |
+
- name: train
|
| 499 |
+
num_bytes: 50118790
|
| 500 |
+
num_examples: 66
|
| 501 |
+
download_size: 12377357
|
| 502 |
+
dataset_size: 50118790
|
| 503 |
+
license: CC BY 4.0
|
| 504 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 505 |
+
- config_name: monash_rideshare
|
| 506 |
+
features:
|
| 507 |
+
- name: id
|
| 508 |
+
dtype: string
|
| 509 |
+
- name: timestamp
|
| 510 |
+
sequence: timestamp[ms]
|
| 511 |
+
- name: source_location
|
| 512 |
+
dtype: string
|
| 513 |
+
- name: provider_name
|
| 514 |
+
dtype: string
|
| 515 |
+
- name: provider_service
|
| 516 |
+
dtype: string
|
| 517 |
+
- name: price_min
|
| 518 |
+
sequence: float64
|
| 519 |
+
- name: price_mean
|
| 520 |
+
sequence: float64
|
| 521 |
+
- name: price_max
|
| 522 |
+
sequence: float64
|
| 523 |
+
- name: distance_min
|
| 524 |
+
sequence: float64
|
| 525 |
+
- name: distance_mean
|
| 526 |
+
sequence: float64
|
| 527 |
+
- name: distance_max
|
| 528 |
+
sequence: float64
|
| 529 |
+
- name: surge_min
|
| 530 |
+
sequence: float64
|
| 531 |
+
- name: surge_mean
|
| 532 |
+
sequence: float64
|
| 533 |
+
- name: surge_max
|
| 534 |
+
sequence: float64
|
| 535 |
+
- name: api_calls
|
| 536 |
+
sequence: float64
|
| 537 |
+
- name: temp
|
| 538 |
+
sequence: float64
|
| 539 |
+
- name: rain
|
| 540 |
+
sequence: float64
|
| 541 |
+
- name: humidity
|
| 542 |
+
sequence: float64
|
| 543 |
+
- name: clouds
|
| 544 |
+
sequence: float64
|
| 545 |
+
- name: wind
|
| 546 |
+
sequence: float64
|
| 547 |
+
splits:
|
| 548 |
+
- name: train
|
| 549 |
+
num_bytes: 10819910
|
| 550 |
+
num_examples: 156
|
| 551 |
+
download_size: 781873
|
| 552 |
+
dataset_size: 10819910
|
| 553 |
+
license: CC BY 4.0
|
| 554 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 555 |
+
- config_name: monash_saugeenday
|
| 556 |
+
features:
|
| 557 |
+
- name: id
|
| 558 |
+
dtype: string
|
| 559 |
+
- name: timestamp
|
| 560 |
+
sequence: timestamp[ms]
|
| 561 |
+
- name: T1
|
| 562 |
+
sequence: float64
|
| 563 |
+
splits:
|
| 564 |
+
- name: train
|
| 565 |
+
num_bytes: 379875
|
| 566 |
+
num_examples: 1
|
| 567 |
+
download_size: 222678
|
| 568 |
+
dataset_size: 379875
|
| 569 |
+
license: CC BY 4.0
|
| 570 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 571 |
+
- config_name: monash_temperature_rain
|
| 572 |
+
features:
|
| 573 |
+
- name: id
|
| 574 |
+
dtype: string
|
| 575 |
+
- name: timestamp
|
| 576 |
+
sequence: timestamp[ms]
|
| 577 |
+
- name: t_mean
|
| 578 |
+
sequence: float64
|
| 579 |
+
- name: prcp_sum
|
| 580 |
+
sequence: float64
|
| 581 |
+
- name: t_max
|
| 582 |
+
sequence: float64
|
| 583 |
+
- name: t_min
|
| 584 |
+
sequence: float64
|
| 585 |
+
- name: fcst_0_dailypop
|
| 586 |
+
sequence: float64
|
| 587 |
+
- name: fcst_0_dailypop1
|
| 588 |
+
sequence: float64
|
| 589 |
+
- name: fcst_0_dailypop10
|
| 590 |
+
sequence: float64
|
| 591 |
+
- name: fcst_0_dailypop15
|
| 592 |
+
sequence: float64
|
| 593 |
+
- name: fcst_0_dailypop25
|
| 594 |
+
sequence: float64
|
| 595 |
+
- name: fcst_0_dailypop5
|
| 596 |
+
sequence: float64
|
| 597 |
+
- name: fcst_0_dailypop50
|
| 598 |
+
sequence: float64
|
| 599 |
+
- name: fcst_0_dailyprecip
|
| 600 |
+
sequence: float64
|
| 601 |
+
- name: fcst_0_dailyprecip10pct
|
| 602 |
+
sequence: float64
|
| 603 |
+
- name: fcst_0_dailyprecip25pct
|
| 604 |
+
sequence: float64
|
| 605 |
+
- name: fcst_0_dailyprecip50pct
|
| 606 |
+
sequence: float64
|
| 607 |
+
- name: fcst_0_dailyprecip75pct
|
| 608 |
+
sequence: float64
|
| 609 |
+
- name: fcst_1_dailypop
|
| 610 |
+
sequence: float64
|
| 611 |
+
- name: fcst_1_dailypop1
|
| 612 |
+
sequence: float64
|
| 613 |
+
- name: fcst_1_dailypop10
|
| 614 |
+
sequence: float64
|
| 615 |
+
- name: fcst_1_dailypop15
|
| 616 |
+
sequence: float64
|
| 617 |
+
- name: fcst_1_dailypop25
|
| 618 |
+
sequence: float64
|
| 619 |
+
- name: fcst_1_dailypop5
|
| 620 |
+
sequence: float64
|
| 621 |
+
- name: fcst_1_dailypop50
|
| 622 |
+
sequence: float64
|
| 623 |
+
- name: fcst_1_dailyprecip
|
| 624 |
+
sequence: float64
|
| 625 |
+
- name: fcst_1_dailyprecip10pct
|
| 626 |
+
sequence: float64
|
| 627 |
+
- name: fcst_1_dailyprecip25pct
|
| 628 |
+
sequence: float64
|
| 629 |
+
- name: fcst_1_dailyprecip50pct
|
| 630 |
+
sequence: float64
|
| 631 |
+
- name: fcst_1_dailyprecip75pct
|
| 632 |
+
sequence: float64
|
| 633 |
+
- name: fcst_2_dailypop
|
| 634 |
+
sequence: float64
|
| 635 |
+
- name: fcst_2_dailypop1
|
| 636 |
+
sequence: float64
|
| 637 |
+
- name: fcst_2_dailypop10
|
| 638 |
+
sequence: float64
|
| 639 |
+
- name: fcst_2_dailypop15
|
| 640 |
+
sequence: float64
|
| 641 |
+
- name: fcst_2_dailypop25
|
| 642 |
+
sequence: float64
|
| 643 |
+
- name: fcst_2_dailypop5
|
| 644 |
+
sequence: float64
|
| 645 |
+
- name: fcst_2_dailypop50
|
| 646 |
+
sequence: float64
|
| 647 |
+
- name: fcst_2_dailyprecip
|
| 648 |
+
sequence: float64
|
| 649 |
+
- name: fcst_2_dailyprecip10pct
|
| 650 |
+
sequence: float64
|
| 651 |
+
- name: fcst_2_dailyprecip25pct
|
| 652 |
+
sequence: float64
|
| 653 |
+
- name: fcst_2_dailyprecip50pct
|
| 654 |
+
sequence: float64
|
| 655 |
+
- name: fcst_2_dailyprecip75pct
|
| 656 |
+
sequence: float64
|
| 657 |
+
- name: fcst_3_dailypop
|
| 658 |
+
sequence: float64
|
| 659 |
+
- name: fcst_3_dailypop1
|
| 660 |
+
sequence: float64
|
| 661 |
+
- name: fcst_3_dailypop10
|
| 662 |
+
sequence: float64
|
| 663 |
+
- name: fcst_3_dailypop15
|
| 664 |
+
sequence: float64
|
| 665 |
+
- name: fcst_3_dailypop25
|
| 666 |
+
sequence: float64
|
| 667 |
+
- name: fcst_3_dailypop5
|
| 668 |
+
sequence: float64
|
| 669 |
+
- name: fcst_3_dailypop50
|
| 670 |
+
sequence: float64
|
| 671 |
+
- name: fcst_3_dailyprecip
|
| 672 |
+
sequence: float64
|
| 673 |
+
- name: fcst_3_dailyprecip10pct
|
| 674 |
+
sequence: float64
|
| 675 |
+
- name: fcst_3_dailyprecip25pct
|
| 676 |
+
sequence: float64
|
| 677 |
+
- name: fcst_3_dailyprecip50pct
|
| 678 |
+
sequence: float64
|
| 679 |
+
- name: fcst_3_dailyprecip75pct
|
| 680 |
+
sequence: float64
|
| 681 |
+
- name: fcst_4_dailypop
|
| 682 |
+
sequence: float64
|
| 683 |
+
- name: fcst_4_dailypop1
|
| 684 |
+
sequence: float64
|
| 685 |
+
- name: fcst_4_dailypop10
|
| 686 |
+
sequence: float64
|
| 687 |
+
- name: fcst_4_dailypop15
|
| 688 |
+
sequence: float64
|
| 689 |
+
- name: fcst_4_dailypop25
|
| 690 |
+
sequence: float64
|
| 691 |
+
- name: fcst_4_dailypop5
|
| 692 |
+
sequence: float64
|
| 693 |
+
- name: fcst_4_dailypop50
|
| 694 |
+
sequence: float64
|
| 695 |
+
- name: fcst_4_dailyprecip
|
| 696 |
+
sequence: float64
|
| 697 |
+
- name: fcst_4_dailyprecip10pct
|
| 698 |
+
sequence: float64
|
| 699 |
+
- name: fcst_4_dailyprecip25pct
|
| 700 |
+
sequence: float64
|
| 701 |
+
- name: fcst_4_dailyprecip50pct
|
| 702 |
+
sequence: float64
|
| 703 |
+
- name: fcst_4_dailyprecip75pct
|
| 704 |
+
sequence: float64
|
| 705 |
+
- name: fcst_5_dailypop
|
| 706 |
+
sequence: float64
|
| 707 |
+
- name: fcst_5_dailypop1
|
| 708 |
+
sequence: float64
|
| 709 |
+
- name: fcst_5_dailypop10
|
| 710 |
+
sequence: float64
|
| 711 |
+
- name: fcst_5_dailypop15
|
| 712 |
+
sequence: float64
|
| 713 |
+
- name: fcst_5_dailypop25
|
| 714 |
+
sequence: float64
|
| 715 |
+
- name: fcst_5_dailypop5
|
| 716 |
+
sequence: float64
|
| 717 |
+
- name: fcst_5_dailypop50
|
| 718 |
+
sequence: float64
|
| 719 |
+
- name: fcst_5_dailyprecip
|
| 720 |
+
sequence: float64
|
| 721 |
+
- name: fcst_5_dailyprecip10pct
|
| 722 |
+
sequence: float64
|
| 723 |
+
- name: fcst_5_dailyprecip25pct
|
| 724 |
+
sequence: float64
|
| 725 |
+
- name: fcst_5_dailyprecip50pct
|
| 726 |
+
sequence: float64
|
| 727 |
+
- name: fcst_5_dailyprecip75pct
|
| 728 |
+
sequence: float64
|
| 729 |
+
splits:
|
| 730 |
+
- name: train
|
| 731 |
+
num_bytes: 188598927
|
| 732 |
+
num_examples: 422
|
| 733 |
+
download_size: 44967856
|
| 734 |
+
dataset_size: 188598927
|
| 735 |
+
license: CC BY 4.0
|
| 736 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 737 |
+
- config_name: monash_tourism_monthly
|
| 738 |
+
features:
|
| 739 |
+
- name: id
|
| 740 |
+
dtype: string
|
| 741 |
+
- name: timestamp
|
| 742 |
+
sequence: timestamp[ms]
|
| 743 |
+
- name: target
|
| 744 |
+
sequence: float64
|
| 745 |
+
splits:
|
| 746 |
+
- name: train
|
| 747 |
+
num_bytes: 1755434
|
| 748 |
+
num_examples: 366
|
| 749 |
+
download_size: 334951
|
| 750 |
+
dataset_size: 1755434
|
| 751 |
+
license: CC BY 4.0
|
| 752 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 753 |
+
- config_name: monash_tourism_quarterly
|
| 754 |
+
features:
|
| 755 |
+
- name: id
|
| 756 |
+
dtype: string
|
| 757 |
+
- name: timestamp
|
| 758 |
+
sequence: timestamp[ms]
|
| 759 |
+
- name: target
|
| 760 |
+
sequence: float64
|
| 761 |
+
splits:
|
| 762 |
+
- name: train
|
| 763 |
+
num_bytes: 688817
|
| 764 |
+
num_examples: 427
|
| 765 |
+
download_size: 177407
|
| 766 |
+
dataset_size: 688817
|
| 767 |
+
license: CC BY 4.0
|
| 768 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 769 |
+
- config_name: monash_tourism_yearly
|
| 770 |
+
features:
|
| 771 |
+
- name: id
|
| 772 |
+
dtype: string
|
| 773 |
+
- name: timestamp
|
| 774 |
+
sequence: timestamp[ms]
|
| 775 |
+
- name: target
|
| 776 |
+
sequence: float64
|
| 777 |
+
splits:
|
| 778 |
+
- name: train
|
| 779 |
+
num_bytes: 213954
|
| 780 |
+
num_examples: 518
|
| 781 |
+
download_size: 81479
|
| 782 |
+
dataset_size: 213954
|
| 783 |
+
license: CC BY 4.0
|
| 784 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 785 |
+
- config_name: monash_traffic
|
| 786 |
+
features:
|
| 787 |
+
- name: id
|
| 788 |
+
dtype: string
|
| 789 |
+
- name: timestamp
|
| 790 |
+
sequence: timestamp[ms]
|
| 791 |
+
- name: target
|
| 792 |
+
sequence: float64
|
| 793 |
+
splits:
|
| 794 |
+
- name: train
|
| 795 |
+
num_bytes: 241983226
|
| 796 |
+
num_examples: 862
|
| 797 |
+
download_size: 52748547
|
| 798 |
+
dataset_size: 241983226
|
| 799 |
+
license: CC BY 4.0
|
| 800 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 801 |
+
- config_name: monash_weather
|
| 802 |
+
features:
|
| 803 |
+
- name: id
|
| 804 |
+
dtype: string
|
| 805 |
+
- name: timestamp
|
| 806 |
+
sequence: timestamp[ms]
|
| 807 |
+
- name: target
|
| 808 |
+
sequence: float64
|
| 809 |
+
- name: subset
|
| 810 |
+
dtype: string
|
| 811 |
+
splits:
|
| 812 |
+
- name: train
|
| 813 |
+
num_bytes: 688598539
|
| 814 |
+
num_examples: 3010
|
| 815 |
+
download_size: 133164027
|
| 816 |
+
dataset_size: 688598539
|
| 817 |
+
license: CC BY 4.0
|
| 818 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 819 |
+
- config_name: nn5
|
| 820 |
+
features:
|
| 821 |
+
- name: id
|
| 822 |
+
dtype: string
|
| 823 |
+
- name: timestamp
|
| 824 |
+
sequence: timestamp[ms]
|
| 825 |
+
- name: target
|
| 826 |
+
sequence: float32
|
| 827 |
+
splits:
|
| 828 |
+
- name: train
|
| 829 |
+
num_examples: 111
|
| 830 |
+
download_size: 203096
|
| 831 |
+
homepage: http://www.neural-forecasting-competition.com/downloads/NN5/datasets/download.htm
|
| 832 |
+
- config_name: solar
|
| 833 |
+
features:
|
| 834 |
+
- name: id
|
| 835 |
+
dtype: string
|
| 836 |
+
- name: timestamp
|
| 837 |
+
sequence: timestamp[ms]
|
| 838 |
+
- name: power_mw
|
| 839 |
+
sequence: float64
|
| 840 |
+
- name: latitude
|
| 841 |
+
dtype: float64
|
| 842 |
+
- name: longitude
|
| 843 |
+
dtype: float64
|
| 844 |
+
- name: capacity_mw
|
| 845 |
+
dtype: float64
|
| 846 |
+
- name: subset
|
| 847 |
+
dtype: string
|
| 848 |
+
splits:
|
| 849 |
+
- name: train
|
| 850 |
+
num_bytes: 8689093932
|
| 851 |
+
num_examples: 5166
|
| 852 |
+
download_size: 1507924920
|
| 853 |
+
dataset_size: 8689093932
|
| 854 |
+
homepage: https://www.nrel.gov/grid/solar-power-data.html
|
| 855 |
+
- config_name: solar_1h
|
| 856 |
+
features:
|
| 857 |
+
- name: id
|
| 858 |
+
dtype: string
|
| 859 |
+
- name: timestamp
|
| 860 |
+
sequence: timestamp[ms]
|
| 861 |
+
- name: power_mw
|
| 862 |
+
sequence: float64
|
| 863 |
+
- name: latitude
|
| 864 |
+
dtype: float64
|
| 865 |
+
- name: longitude
|
| 866 |
+
dtype: float64
|
| 867 |
+
- name: capacity_mw
|
| 868 |
+
dtype: float64
|
| 869 |
+
- name: subset
|
| 870 |
+
dtype: string
|
| 871 |
+
splits:
|
| 872 |
+
- name: train
|
| 873 |
+
num_bytes: 724361772
|
| 874 |
+
num_examples: 5166
|
| 875 |
+
download_size: 124515417
|
| 876 |
+
dataset_size: 724361772
|
| 877 |
+
homepage: https://www.nrel.gov/grid/solar-power-data.html
|
| 878 |
+
- config_name: taxi_1h
|
| 879 |
+
features:
|
| 880 |
+
- name: id
|
| 881 |
+
dtype: string
|
| 882 |
+
- name: timestamp
|
| 883 |
+
sequence: timestamp[ms]
|
| 884 |
+
- name: target
|
| 885 |
+
sequence: float64
|
| 886 |
+
- name: subset
|
| 887 |
+
dtype: string
|
| 888 |
+
- name: lat
|
| 889 |
+
dtype: float64
|
| 890 |
+
- name: lng
|
| 891 |
+
dtype: float64
|
| 892 |
+
splits:
|
| 893 |
+
- name: train
|
| 894 |
+
num_bytes: 28832500
|
| 895 |
+
num_examples: 2428
|
| 896 |
+
download_size: 2265297
|
| 897 |
+
dataset_size: 28832500
|
| 898 |
+
license: Apache 2.0
|
| 899 |
+
homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
|
| 900 |
+
- config_name: taxi_30min
|
| 901 |
+
features:
|
| 902 |
+
- name: id
|
| 903 |
+
dtype: string
|
| 904 |
+
- name: timestamp
|
| 905 |
+
sequence: timestamp[ms]
|
| 906 |
+
- name: target
|
| 907 |
+
sequence: float64
|
| 908 |
+
- name: subset
|
| 909 |
+
dtype: string
|
| 910 |
+
- name: lat
|
| 911 |
+
dtype: float64
|
| 912 |
+
- name: lng
|
| 913 |
+
dtype: float64
|
| 914 |
+
splits:
|
| 915 |
+
- name: train
|
| 916 |
+
num_bytes: 57560596
|
| 917 |
+
num_examples: 2428
|
| 918 |
+
download_size: 4541244
|
| 919 |
+
dataset_size: 57560596
|
| 920 |
+
license: Apache 2.0
|
| 921 |
+
homepage: https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
|
| 922 |
+
- config_name: training_corpus_kernel_synth_1m
|
| 923 |
+
features:
|
| 924 |
+
- name: target
|
| 925 |
+
sequence: float64
|
| 926 |
+
- name: id
|
| 927 |
+
dtype: string
|
| 928 |
+
- name: timestamp
|
| 929 |
+
sequence: timestamp[ms]
|
| 930 |
+
splits:
|
| 931 |
+
- name: train
|
| 932 |
+
num_examples: 1000000
|
| 933 |
+
download_size: 8313239368
|
| 934 |
+
- config_name: training_corpus_tsmixup_10m
|
| 935 |
+
features:
|
| 936 |
+
- name: target
|
| 937 |
+
sequence: float64
|
| 938 |
+
- name: id
|
| 939 |
+
dtype: string
|
| 940 |
+
- name: timestamp
|
| 941 |
+
sequence: timestamp[ms]
|
| 942 |
+
splits:
|
| 943 |
+
- name: train
|
| 944 |
+
num_examples: 10000000
|
| 945 |
+
download_size: 82189589906
|
| 946 |
+
- config_name: uber_tlc_daily
|
| 947 |
+
features:
|
| 948 |
+
- name: id
|
| 949 |
+
dtype: string
|
| 950 |
+
- name: timestamp
|
| 951 |
+
sequence: timestamp[ms]
|
| 952 |
+
- name: target
|
| 953 |
+
sequence: int64
|
| 954 |
+
splits:
|
| 955 |
+
- name: train
|
| 956 |
+
num_examples: 262
|
| 957 |
+
download_size: 84747
|
| 958 |
+
homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
|
| 959 |
+
- config_name: uber_tlc_hourly
|
| 960 |
+
features:
|
| 961 |
+
- name: id
|
| 962 |
+
dtype: string
|
| 963 |
+
- name: timestamp
|
| 964 |
+
sequence: timestamp[ms]
|
| 965 |
+
- name: target
|
| 966 |
+
sequence: int64
|
| 967 |
+
splits:
|
| 968 |
+
- name: train
|
| 969 |
+
num_examples: 262
|
| 970 |
+
download_size: 1878515
|
| 971 |
+
homepage: https://github.com/fivethirtyeight/uber-tlc-foil-response
|
| 972 |
+
- config_name: ushcn_daily
|
| 973 |
+
features:
|
| 974 |
+
- name: id
|
| 975 |
+
dtype: string
|
| 976 |
+
- name: timestamp
|
| 977 |
+
sequence: timestamp[ms]
|
| 978 |
+
- name: state
|
| 979 |
+
dtype: string
|
| 980 |
+
- name: coop_id
|
| 981 |
+
dtype: int64
|
| 982 |
+
- name: PRCP
|
| 983 |
+
sequence: float64
|
| 984 |
+
- name: SNOW
|
| 985 |
+
sequence: float64
|
| 986 |
+
- name: SNWD
|
| 987 |
+
sequence: float64
|
| 988 |
+
- name: TMAX
|
| 989 |
+
sequence: float64
|
| 990 |
+
- name: TMIN
|
| 991 |
+
sequence: float64
|
| 992 |
+
splits:
|
| 993 |
+
- name: train
|
| 994 |
+
num_bytes: 2259905202
|
| 995 |
+
num_examples: 1218
|
| 996 |
+
download_size: 221089890
|
| 997 |
+
dataset_size: 2259905202
|
| 998 |
+
homepage: https://data.ess-dive.lbl.gov/portals/CDIAC
|
| 999 |
+
- config_name: weatherbench_daily
|
| 1000 |
+
features:
|
| 1001 |
+
- name: id
|
| 1002 |
+
dtype: string
|
| 1003 |
+
- name: timestamp
|
| 1004 |
+
sequence: timestamp[ms]
|
| 1005 |
+
- name: target
|
| 1006 |
+
sequence: float32
|
| 1007 |
+
- name: latitude
|
| 1008 |
+
dtype: float64
|
| 1009 |
+
- name: longitude
|
| 1010 |
+
dtype: float64
|
| 1011 |
+
- name: level
|
| 1012 |
+
dtype: float64
|
| 1013 |
+
- name: subset
|
| 1014 |
+
dtype: string
|
| 1015 |
+
splits:
|
| 1016 |
+
- name: train
|
| 1017 |
+
num_bytes: 39510157312
|
| 1018 |
+
num_examples: 225280
|
| 1019 |
+
download_size: 18924392742
|
| 1020 |
+
dataset_size: 39510157312
|
| 1021 |
+
license: MIT
|
| 1022 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1023 |
+
- config_name: weatherbench_hourly_10m_u_component_of_wind
|
| 1024 |
+
features:
|
| 1025 |
+
- name: latitude
|
| 1026 |
+
dtype: float64
|
| 1027 |
+
- name: longitude
|
| 1028 |
+
dtype: float64
|
| 1029 |
+
- name: target
|
| 1030 |
+
sequence: float32
|
| 1031 |
+
- name: level
|
| 1032 |
+
dtype: float64
|
| 1033 |
+
- name: timestamp
|
| 1034 |
+
sequence: timestamp[ms]
|
| 1035 |
+
- name: subset
|
| 1036 |
+
dtype: string
|
| 1037 |
+
- name: id
|
| 1038 |
+
dtype: string
|
| 1039 |
+
splits:
|
| 1040 |
+
- name: train
|
| 1041 |
+
num_examples: 2048
|
| 1042 |
+
download_size: 7292845757
|
| 1043 |
+
dataset_size: 8617472000
|
| 1044 |
+
license: MIT
|
| 1045 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1046 |
+
- config_name: weatherbench_hourly_10m_v_component_of_wind
|
| 1047 |
+
features:
|
| 1048 |
+
- name: latitude
|
| 1049 |
+
dtype: float64
|
| 1050 |
+
- name: longitude
|
| 1051 |
+
dtype: float64
|
| 1052 |
+
- name: target
|
| 1053 |
+
sequence: float32
|
| 1054 |
+
- name: level
|
| 1055 |
+
dtype: float64
|
| 1056 |
+
- name: timestamp
|
| 1057 |
+
sequence: timestamp[ms]
|
| 1058 |
+
- name: subset
|
| 1059 |
+
dtype: string
|
| 1060 |
+
- name: id
|
| 1061 |
+
dtype: string
|
| 1062 |
+
splits:
|
| 1063 |
+
- name: train
|
| 1064 |
+
num_examples: 2048
|
| 1065 |
+
download_size: 7292352508
|
| 1066 |
+
dataset_size: 8617472000
|
| 1067 |
+
license: MIT
|
| 1068 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1069 |
+
- config_name: weatherbench_hourly_2m_temperature
|
| 1070 |
+
features:
|
| 1071 |
+
- name: latitude
|
| 1072 |
+
dtype: float64
|
| 1073 |
+
- name: longitude
|
| 1074 |
+
dtype: float64
|
| 1075 |
+
- name: target
|
| 1076 |
+
sequence: float32
|
| 1077 |
+
- name: level
|
| 1078 |
+
dtype: float64
|
| 1079 |
+
- name: timestamp
|
| 1080 |
+
sequence: timestamp[ms]
|
| 1081 |
+
- name: subset
|
| 1082 |
+
dtype: string
|
| 1083 |
+
- name: id
|
| 1084 |
+
dtype: string
|
| 1085 |
+
splits:
|
| 1086 |
+
- name: train
|
| 1087 |
+
num_examples: 2048
|
| 1088 |
+
download_size: 7276396852
|
| 1089 |
+
dataset_size: 8617453568
|
| 1090 |
+
license: MIT
|
| 1091 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1092 |
+
- config_name: weatherbench_hourly_geopotential
|
| 1093 |
+
features:
|
| 1094 |
+
- name: latitude
|
| 1095 |
+
dtype: float64
|
| 1096 |
+
- name: longitude
|
| 1097 |
+
dtype: float64
|
| 1098 |
+
- name: target
|
| 1099 |
+
sequence: float32
|
| 1100 |
+
- name: level
|
| 1101 |
+
dtype: int64
|
| 1102 |
+
- name: timestamp
|
| 1103 |
+
sequence: timestamp[ms]
|
| 1104 |
+
- name: subset
|
| 1105 |
+
dtype: string
|
| 1106 |
+
- name: id
|
| 1107 |
+
dtype: string
|
| 1108 |
+
splits:
|
| 1109 |
+
- name: train
|
| 1110 |
+
num_examples: 26624
|
| 1111 |
+
download_size: 87305564613
|
| 1112 |
+
license: MIT
|
| 1113 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1114 |
+
- config_name: weatherbench_hourly_potential_vorticity
|
| 1115 |
+
features:
|
| 1116 |
+
- name: latitude
|
| 1117 |
+
dtype: float64
|
| 1118 |
+
- name: longitude
|
| 1119 |
+
dtype: float64
|
| 1120 |
+
- name: target
|
| 1121 |
+
sequence: float32
|
| 1122 |
+
- name: level
|
| 1123 |
+
dtype: int64
|
| 1124 |
+
- name: timestamp
|
| 1125 |
+
sequence: timestamp[ms]
|
| 1126 |
+
- name: subset
|
| 1127 |
+
dtype: string
|
| 1128 |
+
- name: id
|
| 1129 |
+
dtype: string
|
| 1130 |
+
splits:
|
| 1131 |
+
- name: train
|
| 1132 |
+
num_examples: 26624
|
| 1133 |
+
download_size: 92426240043
|
| 1134 |
+
license: MIT
|
| 1135 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1136 |
+
- config_name: weatherbench_hourly_relative_humidity
|
| 1137 |
+
features:
|
| 1138 |
+
- name: latitude
|
| 1139 |
+
dtype: float64
|
| 1140 |
+
- name: longitude
|
| 1141 |
+
dtype: float64
|
| 1142 |
+
- name: target
|
| 1143 |
+
sequence: float32
|
| 1144 |
+
- name: level
|
| 1145 |
+
dtype: int64
|
| 1146 |
+
- name: timestamp
|
| 1147 |
+
sequence: timestamp[ms]
|
| 1148 |
+
- name: subset
|
| 1149 |
+
dtype: string
|
| 1150 |
+
- name: id
|
| 1151 |
+
dtype: string
|
| 1152 |
+
splits:
|
| 1153 |
+
- name: train
|
| 1154 |
+
num_examples: 26624
|
| 1155 |
+
download_size: 94728788382
|
| 1156 |
+
license: MIT
|
| 1157 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1158 |
+
- config_name: weatherbench_hourly_specific_humidity
|
| 1159 |
+
features:
|
| 1160 |
+
- name: latitude
|
| 1161 |
+
dtype: float64
|
| 1162 |
+
- name: longitude
|
| 1163 |
+
dtype: float64
|
| 1164 |
+
- name: target
|
| 1165 |
+
sequence: float32
|
| 1166 |
+
- name: level
|
| 1167 |
+
dtype: int64
|
| 1168 |
+
- name: timestamp
|
| 1169 |
+
sequence: timestamp[ms]
|
| 1170 |
+
- name: subset
|
| 1171 |
+
dtype: string
|
| 1172 |
+
- name: id
|
| 1173 |
+
dtype: string
|
| 1174 |
+
splits:
|
| 1175 |
+
- name: train
|
| 1176 |
+
num_examples: 26624
|
| 1177 |
+
download_size: 85139896451
|
| 1178 |
+
license: MIT
|
| 1179 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1180 |
+
- config_name: weatherbench_hourly_temperature
|
| 1181 |
+
features:
|
| 1182 |
+
- name: latitude
|
| 1183 |
+
dtype: float64
|
| 1184 |
+
- name: longitude
|
| 1185 |
+
dtype: float64
|
| 1186 |
+
- name: target
|
| 1187 |
+
sequence: float32
|
| 1188 |
+
- name: level
|
| 1189 |
+
dtype: int64
|
| 1190 |
+
- name: timestamp
|
| 1191 |
+
sequence: timestamp[ms]
|
| 1192 |
+
- name: subset
|
| 1193 |
+
dtype: string
|
| 1194 |
+
- name: id
|
| 1195 |
+
dtype: string
|
| 1196 |
+
splits:
|
| 1197 |
+
- name: train
|
| 1198 |
+
num_examples: 26624
|
| 1199 |
+
download_size: 94081539079
|
| 1200 |
+
license: MIT
|
| 1201 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1202 |
+
- config_name: weatherbench_hourly_toa_incident_solar_radiation
|
| 1203 |
+
features:
|
| 1204 |
+
- name: latitude
|
| 1205 |
+
dtype: float64
|
| 1206 |
+
- name: longitude
|
| 1207 |
+
dtype: float64
|
| 1208 |
+
- name: target
|
| 1209 |
+
sequence: float32
|
| 1210 |
+
- name: level
|
| 1211 |
+
dtype: float64
|
| 1212 |
+
- name: timestamp
|
| 1213 |
+
sequence: timestamp[ms]
|
| 1214 |
+
- name: subset
|
| 1215 |
+
dtype: string
|
| 1216 |
+
- name: id
|
| 1217 |
+
dtype: string
|
| 1218 |
+
splits:
|
| 1219 |
+
- name: train
|
| 1220 |
+
num_examples: 2048
|
| 1221 |
+
download_size: 6057953007
|
| 1222 |
+
license: MIT
|
| 1223 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1224 |
+
- config_name: weatherbench_hourly_total_cloud_cover
|
| 1225 |
+
features:
|
| 1226 |
+
- name: latitude
|
| 1227 |
+
dtype: float64
|
| 1228 |
+
- name: longitude
|
| 1229 |
+
dtype: float64
|
| 1230 |
+
- name: target
|
| 1231 |
+
sequence: float32
|
| 1232 |
+
- name: level
|
| 1233 |
+
dtype: float64
|
| 1234 |
+
- name: timestamp
|
| 1235 |
+
sequence: timestamp[ms]
|
| 1236 |
+
- name: subset
|
| 1237 |
+
dtype: string
|
| 1238 |
+
- name: id
|
| 1239 |
+
dtype: string
|
| 1240 |
+
splits:
|
| 1241 |
+
- name: train
|
| 1242 |
+
num_examples: 2048
|
| 1243 |
+
download_size: 6628258398
|
| 1244 |
+
license: MIT
|
| 1245 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1246 |
+
- config_name: weatherbench_hourly_total_precipitation
|
| 1247 |
+
features:
|
| 1248 |
+
- name: latitude
|
| 1249 |
+
dtype: float64
|
| 1250 |
+
- name: longitude
|
| 1251 |
+
dtype: float64
|
| 1252 |
+
- name: target
|
| 1253 |
+
sequence: float32
|
| 1254 |
+
- name: level
|
| 1255 |
+
dtype: float64
|
| 1256 |
+
- name: timestamp
|
| 1257 |
+
sequence: timestamp[ms]
|
| 1258 |
+
- name: subset
|
| 1259 |
+
dtype: string
|
| 1260 |
+
- name: id
|
| 1261 |
+
dtype: string
|
| 1262 |
+
splits:
|
| 1263 |
+
- name: train
|
| 1264 |
+
num_examples: 2048
|
| 1265 |
+
download_size: 6473160755
|
| 1266 |
+
license: MIT
|
| 1267 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1268 |
+
- config_name: weatherbench_hourly_u_component_of_wind
|
| 1269 |
+
features:
|
| 1270 |
+
- name: latitude
|
| 1271 |
+
dtype: float64
|
| 1272 |
+
- name: longitude
|
| 1273 |
+
dtype: float64
|
| 1274 |
+
- name: target
|
| 1275 |
+
sequence: float32
|
| 1276 |
+
- name: level
|
| 1277 |
+
dtype: int64
|
| 1278 |
+
- name: timestamp
|
| 1279 |
+
sequence: timestamp[ms]
|
| 1280 |
+
- name: subset
|
| 1281 |
+
dtype: string
|
| 1282 |
+
- name: id
|
| 1283 |
+
dtype: string
|
| 1284 |
+
splits:
|
| 1285 |
+
- name: train
|
| 1286 |
+
num_examples: 26624
|
| 1287 |
+
download_size: 94801498563
|
| 1288 |
+
license: MIT
|
| 1289 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1290 |
+
- config_name: weatherbench_hourly_v_component_of_wind
|
| 1291 |
+
features:
|
| 1292 |
+
- name: latitude
|
| 1293 |
+
dtype: float64
|
| 1294 |
+
- name: longitude
|
| 1295 |
+
dtype: float64
|
| 1296 |
+
- name: target
|
| 1297 |
+
sequence: float32
|
| 1298 |
+
- name: level
|
| 1299 |
+
dtype: int64
|
| 1300 |
+
- name: timestamp
|
| 1301 |
+
sequence: timestamp[ms]
|
| 1302 |
+
- name: subset
|
| 1303 |
+
dtype: string
|
| 1304 |
+
- name: id
|
| 1305 |
+
dtype: string
|
| 1306 |
+
splits:
|
| 1307 |
+
- name: train
|
| 1308 |
+
num_examples: 26624
|
| 1309 |
+
download_size: 94800557482
|
| 1310 |
+
license: MIT
|
| 1311 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1312 |
+
- config_name: weatherbench_hourly_vorticity
|
| 1313 |
+
features:
|
| 1314 |
+
- name: latitude
|
| 1315 |
+
dtype: float64
|
| 1316 |
+
- name: longitude
|
| 1317 |
+
dtype: float64
|
| 1318 |
+
- name: target
|
| 1319 |
+
sequence: float32
|
| 1320 |
+
- name: level
|
| 1321 |
+
dtype: int64
|
| 1322 |
+
- name: timestamp
|
| 1323 |
+
sequence: timestamp[ms]
|
| 1324 |
+
- name: subset
|
| 1325 |
+
dtype: string
|
| 1326 |
+
- name: id
|
| 1327 |
+
dtype: string
|
| 1328 |
+
splits:
|
| 1329 |
+
- name: train
|
| 1330 |
+
num_examples: 26624
|
| 1331 |
+
download_size: 94720960560
|
| 1332 |
+
license: MIT
|
| 1333 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1334 |
+
- config_name: weatherbench_weekly
|
| 1335 |
+
features:
|
| 1336 |
+
- name: id
|
| 1337 |
+
dtype: string
|
| 1338 |
+
- name: timestamp
|
| 1339 |
+
sequence: timestamp[ms]
|
| 1340 |
+
- name: target
|
| 1341 |
+
sequence: float32
|
| 1342 |
+
- name: latitude
|
| 1343 |
+
dtype: float64
|
| 1344 |
+
- name: longitude
|
| 1345 |
+
dtype: float64
|
| 1346 |
+
- name: level
|
| 1347 |
+
dtype: float64
|
| 1348 |
+
- name: subset
|
| 1349 |
+
dtype: string
|
| 1350 |
+
splits:
|
| 1351 |
+
- name: train
|
| 1352 |
+
num_bytes: 5656029184
|
| 1353 |
+
num_examples: 225280
|
| 1354 |
+
download_size: 2243012083
|
| 1355 |
+
dataset_size: 5656029184
|
| 1356 |
+
license: MIT
|
| 1357 |
+
homepage: https://github.com/pangeo-data/WeatherBench
|
| 1358 |
+
- config_name: wiki_daily_100k
|
| 1359 |
+
features:
|
| 1360 |
+
- name: id
|
| 1361 |
+
dtype: string
|
| 1362 |
+
- name: timestamp
|
| 1363 |
+
sequence: timestamp[ms]
|
| 1364 |
+
- name: target
|
| 1365 |
+
sequence: float64
|
| 1366 |
+
- name: page_name
|
| 1367 |
+
dtype: string
|
| 1368 |
+
splits:
|
| 1369 |
+
- name: train
|
| 1370 |
+
num_bytes: 4389782678
|
| 1371 |
+
num_examples: 100000
|
| 1372 |
+
download_size: 592554033
|
| 1373 |
+
dataset_size: 4389782678
|
| 1374 |
+
license: CC0
|
| 1375 |
+
homepage: https://dumps.wikimedia.org/other/pageviews/readme.html
|
| 1376 |
+
- config_name: wind_farms_daily
|
| 1377 |
+
features:
|
| 1378 |
+
- name: id
|
| 1379 |
+
dtype: string
|
| 1380 |
+
- name: timestamp
|
| 1381 |
+
sequence: timestamp[ms]
|
| 1382 |
+
- name: target
|
| 1383 |
+
sequence: float64
|
| 1384 |
+
splits:
|
| 1385 |
+
- name: train
|
| 1386 |
+
num_bytes: 1919187
|
| 1387 |
+
num_examples: 337
|
| 1388 |
+
download_size: 598834
|
| 1389 |
+
dataset_size: 1919187
|
| 1390 |
+
license: CC BY 4.0
|
| 1391 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 1392 |
+
- config_name: wind_farms_hourly
|
| 1393 |
+
features:
|
| 1394 |
+
- name: id
|
| 1395 |
+
dtype: string
|
| 1396 |
+
- name: timestamp
|
| 1397 |
+
sequence: timestamp[ms]
|
| 1398 |
+
- name: target
|
| 1399 |
+
sequence: float64
|
| 1400 |
+
splits:
|
| 1401 |
+
- name: train
|
| 1402 |
+
num_bytes: 45917027
|
| 1403 |
+
num_examples: 337
|
| 1404 |
+
download_size: 12333116
|
| 1405 |
+
dataset_size: 45917027
|
| 1406 |
+
license: CC BY 4.0
|
| 1407 |
+
homepage: https://zenodo.org/communities/forecasting
|
| 1408 |
+
configs:
|
| 1409 |
+
- config_name: dominick
|
| 1410 |
+
data_files:
|
| 1411 |
+
- split: train
|
| 1412 |
+
path: dominick/train-*
|
| 1413 |
+
- config_name: electricity_15min
|
| 1414 |
+
data_files:
|
| 1415 |
+
- split: train
|
| 1416 |
+
path: electricity_15min/train-*
|
| 1417 |
+
- config_name: ercot
|
| 1418 |
+
data_files:
|
| 1419 |
+
- split: train
|
| 1420 |
+
path: ercot/train-*
|
| 1421 |
+
- config_name: exchange_rate
|
| 1422 |
+
data_files:
|
| 1423 |
+
- split: train
|
| 1424 |
+
path: exchange_rate/train-*
|
| 1425 |
+
- config_name: m4_daily
|
| 1426 |
+
data_files:
|
| 1427 |
+
- split: train
|
| 1428 |
+
path: m4_daily/train-*
|
| 1429 |
+
- config_name: m4_hourly
|
| 1430 |
+
data_files:
|
| 1431 |
+
- split: train
|
| 1432 |
+
path: m4_hourly/train-*
|
| 1433 |
+
- config_name: m4_monthly
|
| 1434 |
+
data_files:
|
| 1435 |
+
- split: train
|
| 1436 |
+
path: m4_monthly/train-*
|
| 1437 |
+
- config_name: m4_quarterly
|
| 1438 |
+
data_files:
|
| 1439 |
+
- split: train
|
| 1440 |
+
path: m4_quarterly/train-*
|
| 1441 |
+
- config_name: m4_weekly
|
| 1442 |
+
data_files:
|
| 1443 |
+
- split: train
|
| 1444 |
+
path: m4_weekly/train-*
|
| 1445 |
+
- config_name: m4_yearly
|
| 1446 |
+
data_files:
|
| 1447 |
+
- split: train
|
| 1448 |
+
path: m4_yearly/train-*
|
| 1449 |
+
- config_name: m5
|
| 1450 |
+
data_files:
|
| 1451 |
+
- split: train
|
| 1452 |
+
path: m5/train-*
|
| 1453 |
+
- config_name: mexico_city_bikes
|
| 1454 |
+
data_files:
|
| 1455 |
+
- split: train
|
| 1456 |
+
path: mexico_city_bikes/train-*
|
| 1457 |
+
- config_name: monash_australian_electricity
|
| 1458 |
+
data_files:
|
| 1459 |
+
- split: train
|
| 1460 |
+
path: monash_australian_electricity/train-*
|
| 1461 |
+
- config_name: monash_car_parts
|
| 1462 |
+
data_files:
|
| 1463 |
+
- split: train
|
| 1464 |
+
path: monash_car_parts/train-*
|
| 1465 |
+
- config_name: monash_cif_2016
|
| 1466 |
+
data_files:
|
| 1467 |
+
- split: train
|
| 1468 |
+
path: monash_cif_2016/train-*
|
| 1469 |
+
- config_name: monash_covid_deaths
|
| 1470 |
+
data_files:
|
| 1471 |
+
- split: train
|
| 1472 |
+
path: monash_covid_deaths/train-*
|
| 1473 |
+
- config_name: monash_electricity_hourly
|
| 1474 |
+
data_files:
|
| 1475 |
+
- split: train
|
| 1476 |
+
path: monash_electricity_hourly/train-*
|
| 1477 |
+
- config_name: monash_electricity_weekly
|
| 1478 |
+
data_files:
|
| 1479 |
+
- split: train
|
| 1480 |
+
path: monash_electricity_weekly/train-*
|
| 1481 |
+
- config_name: monash_fred_md
|
| 1482 |
+
data_files:
|
| 1483 |
+
- split: train
|
| 1484 |
+
path: monash_fred_md/train-*
|
| 1485 |
+
- config_name: monash_hospital
|
| 1486 |
+
data_files:
|
| 1487 |
+
- split: train
|
| 1488 |
+
path: monash_hospital/train-*
|
| 1489 |
+
- config_name: monash_kdd_cup_2018
|
| 1490 |
+
data_files:
|
| 1491 |
+
- split: train
|
| 1492 |
+
path: monash_kdd_cup_2018/train-*
|
| 1493 |
+
- config_name: monash_london_smart_meters
|
| 1494 |
+
data_files:
|
| 1495 |
+
- split: train
|
| 1496 |
+
path: monash_london_smart_meters/train-*
|
| 1497 |
+
- config_name: monash_m1_monthly
|
| 1498 |
+
data_files:
|
| 1499 |
+
- split: train
|
| 1500 |
+
path: monash_m1_monthly/train-*
|
| 1501 |
+
- config_name: monash_m1_quarterly
|
| 1502 |
+
data_files:
|
| 1503 |
+
- split: train
|
| 1504 |
+
path: monash_m1_quarterly/train-*
|
| 1505 |
+
- config_name: monash_m1_yearly
|
| 1506 |
+
data_files:
|
| 1507 |
+
- split: train
|
| 1508 |
+
path: monash_m1_yearly/train-*
|
| 1509 |
+
- config_name: monash_m3_monthly
|
| 1510 |
+
data_files:
|
| 1511 |
+
- split: train
|
| 1512 |
+
path: monash_m3_monthly/train-*
|
| 1513 |
+
- config_name: monash_m3_quarterly
|
| 1514 |
+
data_files:
|
| 1515 |
+
- split: train
|
| 1516 |
+
path: monash_m3_quarterly/train-*
|
| 1517 |
+
- config_name: monash_m3_yearly
|
| 1518 |
+
data_files:
|
| 1519 |
+
- split: train
|
| 1520 |
+
path: monash_m3_yearly/train-*
|
| 1521 |
+
- config_name: monash_nn5_weekly
|
| 1522 |
+
data_files:
|
| 1523 |
+
- split: train
|
| 1524 |
+
path: monash_nn5_weekly/train-*
|
| 1525 |
+
- config_name: monash_pedestrian_counts
|
| 1526 |
+
data_files:
|
| 1527 |
+
- split: train
|
| 1528 |
+
path: monash_pedestrian_counts/train-*
|
| 1529 |
+
- config_name: monash_rideshare
|
| 1530 |
+
data_files:
|
| 1531 |
+
- split: train
|
| 1532 |
+
path: monash_rideshare/train-*
|
| 1533 |
+
- config_name: monash_saugeenday
|
| 1534 |
+
data_files:
|
| 1535 |
+
- split: train
|
| 1536 |
+
path: monash_saugeenday/train-*
|
| 1537 |
+
- config_name: monash_temperature_rain
|
| 1538 |
+
data_files:
|
| 1539 |
+
- split: train
|
| 1540 |
+
path: monash_temperature_rain/train-*
|
| 1541 |
+
- config_name: monash_tourism_monthly
|
| 1542 |
+
data_files:
|
| 1543 |
+
- split: train
|
| 1544 |
+
path: monash_tourism_monthly/train-*
|
| 1545 |
+
- config_name: monash_tourism_quarterly
|
| 1546 |
+
data_files:
|
| 1547 |
+
- split: train
|
| 1548 |
+
path: monash_tourism_quarterly/train-*
|
| 1549 |
+
- config_name: monash_tourism_yearly
|
| 1550 |
+
data_files:
|
| 1551 |
+
- split: train
|
| 1552 |
+
path: monash_tourism_yearly/train-*
|
| 1553 |
+
- config_name: monash_traffic
|
| 1554 |
+
data_files:
|
| 1555 |
+
- split: train
|
| 1556 |
+
path: monash_traffic/train-*
|
| 1557 |
+
- config_name: monash_weather
|
| 1558 |
+
data_files:
|
| 1559 |
+
- split: train
|
| 1560 |
+
path: monash_weather/train-*
|
| 1561 |
+
- config_name: nn5
|
| 1562 |
+
data_files:
|
| 1563 |
+
- split: train
|
| 1564 |
+
path: nn5/train-*
|
| 1565 |
+
- config_name: solar
|
| 1566 |
+
data_files:
|
| 1567 |
+
- split: train
|
| 1568 |
+
path: solar/train-*
|
| 1569 |
+
- config_name: solar_1h
|
| 1570 |
+
data_files:
|
| 1571 |
+
- split: train
|
| 1572 |
+
path: solar_1h/train-*
|
| 1573 |
+
- config_name: taxi_1h
|
| 1574 |
+
data_files:
|
| 1575 |
+
- split: train
|
| 1576 |
+
path: taxi_1h/train-*
|
| 1577 |
+
- config_name: taxi_30min
|
| 1578 |
+
data_files:
|
| 1579 |
+
- split: train
|
| 1580 |
+
path: taxi_30min/train-*
|
| 1581 |
+
- config_name: training_corpus_kernel_synth_1m
|
| 1582 |
+
data_files:
|
| 1583 |
+
- split: train
|
| 1584 |
+
path: training_corpus/kernel_synth_1m/train-*
|
| 1585 |
+
- config_name: training_corpus_tsmixup_10m
|
| 1586 |
+
data_files:
|
| 1587 |
+
- split: train
|
| 1588 |
+
path: training_corpus/tsmixup_10m/train-*
|
| 1589 |
+
- config_name: uber_tlc_daily
|
| 1590 |
+
data_files:
|
| 1591 |
+
- split: train
|
| 1592 |
+
path: uber_tlc_daily/train-*
|
| 1593 |
+
- config_name: uber_tlc_hourly
|
| 1594 |
+
data_files:
|
| 1595 |
+
- split: train
|
| 1596 |
+
path: uber_tlc_hourly/train-*
|
| 1597 |
+
- config_name: ushcn_daily
|
| 1598 |
+
data_files:
|
| 1599 |
+
- split: train
|
| 1600 |
+
path: ushcn_daily/train-*
|
| 1601 |
+
- config_name: weatherbench_daily
|
| 1602 |
+
data_files:
|
| 1603 |
+
- split: train
|
| 1604 |
+
path: weatherbench_daily/train-*
|
| 1605 |
+
- config_name: weatherbench_hourly_10m_u_component_of_wind
|
| 1606 |
+
data_files:
|
| 1607 |
+
- split: train
|
| 1608 |
+
path: weatherbench_hourly/10m_u_component_of_wind/train-*
|
| 1609 |
+
- config_name: weatherbench_hourly_10m_v_component_of_wind
|
| 1610 |
+
data_files:
|
| 1611 |
+
- split: train
|
| 1612 |
+
path: weatherbench_hourly/10m_v_component_of_wind/train-*
|
| 1613 |
+
- config_name: weatherbench_hourly_2m_temperature
|
| 1614 |
+
data_files:
|
| 1615 |
+
- split: train
|
| 1616 |
+
path: weatherbench_hourly/2m_temperature/train-*
|
| 1617 |
+
- config_name: weatherbench_hourly_geopotential
|
| 1618 |
+
data_files:
|
| 1619 |
+
- split: train
|
| 1620 |
+
path: weatherbench_hourly/geopotential/train-*
|
| 1621 |
+
- config_name: weatherbench_hourly_potential_vorticity
|
| 1622 |
+
data_files:
|
| 1623 |
+
- split: train
|
| 1624 |
+
path: weatherbench_hourly/potential_vorticity/train-*
|
| 1625 |
+
- config_name: weatherbench_hourly_relative_humidity
|
| 1626 |
+
data_files:
|
| 1627 |
+
- split: train
|
| 1628 |
+
path: weatherbench_hourly/relative_humidity/train-*
|
| 1629 |
+
- config_name: weatherbench_hourly_specific_humidity
|
| 1630 |
+
data_files:
|
| 1631 |
+
- split: train
|
| 1632 |
+
path: weatherbench_hourly/specific_humidity/train-*
|
| 1633 |
+
- config_name: weatherbench_hourly_temperature
|
| 1634 |
+
data_files:
|
| 1635 |
+
- split: train
|
| 1636 |
+
path: weatherbench_hourly/temperature/train-*
|
| 1637 |
+
- config_name: weatherbench_hourly_toa_incident_solar_radiation
|
| 1638 |
+
data_files:
|
| 1639 |
+
- split: train
|
| 1640 |
+
path: weatherbench_hourly/toa_incident_solar_radiation/train-*
|
| 1641 |
+
- config_name: weatherbench_hourly_total_cloud_cover
|
| 1642 |
+
data_files:
|
| 1643 |
+
- split: train
|
| 1644 |
+
path: weatherbench_hourly/total_cloud_cover/train-*
|
| 1645 |
+
- config_name: weatherbench_hourly_total_precipitation
|
| 1646 |
+
data_files:
|
| 1647 |
+
- split: train
|
| 1648 |
+
path: weatherbench_hourly/total_precipitation/train-*
|
| 1649 |
+
- config_name: weatherbench_hourly_u_component_of_wind
|
| 1650 |
+
data_files:
|
| 1651 |
+
- split: train
|
| 1652 |
+
path: weatherbench_hourly/u_component_of_wind/train-*
|
| 1653 |
+
- config_name: weatherbench_hourly_v_component_of_wind
|
| 1654 |
+
data_files:
|
| 1655 |
+
- split: train
|
| 1656 |
+
path: weatherbench_hourly/v_component_of_wind/train-*
|
| 1657 |
+
- config_name: weatherbench_hourly_vorticity
|
| 1658 |
+
data_files:
|
| 1659 |
+
- split: train
|
| 1660 |
+
path: weatherbench_hourly/vorticity/train-*
|
| 1661 |
+
- config_name: weatherbench_weekly
|
| 1662 |
+
data_files:
|
| 1663 |
+
- split: train
|
| 1664 |
+
path: weatherbench_weekly/train-*
|
| 1665 |
+
- config_name: wiki_daily_100k
|
| 1666 |
+
data_files:
|
| 1667 |
+
- split: train
|
| 1668 |
+
path: wiki_daily_100k/train-*
|
| 1669 |
+
- config_name: wind_farms_daily
|
| 1670 |
+
data_files:
|
| 1671 |
+
- split: train
|
| 1672 |
+
path: wind_farms_daily/train-*
|
| 1673 |
+
- config_name: wind_farms_hourly
|
| 1674 |
+
data_files:
|
| 1675 |
+
- split: train
|
| 1676 |
+
path: wind_farms_hourly/train-*
|
| 1677 |
+
---
|
| 1678 |
+
|
| 1679 |
+
# Chronos datasets
|
| 1680 |
+
|
| 1681 |
+
Time series datasets used for training and evaluation of the [Chronos](https://github.com/amazon-science/chronos-forecasting) forecasting models.
|
| 1682 |
+
|
| 1683 |
+
Note that some Chronos datasets (`ETTh`, `ETTm`, `brazilian_cities_temperature` and `spanish_energy_and_weather`) that rely on a custom builder script are available in the companion repo [`autogluon/chronos_datasets_extra`](https://huggingface.co/datasets/autogluon/chronos_datasets_extra).
|
| 1684 |
+
|
| 1685 |
+
See the [paper](https://arxiv.org/abs/2403.07815) for more information.
|
| 1686 |
+
|
| 1687 |
+
## Data format and usage
|
| 1688 |
+
|
| 1689 |
+
All datasets satisfy the following high-level schema:
|
| 1690 |
+
- Each dataset row corresponds to a single (univariate or multivariate) time series.
|
| 1691 |
+
- There exists one column with name `id` and type `string` that contains the unique identifier of each time series.
|
| 1692 |
+
- There exists one column of type `Sequence` with dtype `timestamp[ms]`. This column contains the timestamps of the observations. Timestamps are guaranteed to have a regular frequency that can be obtained with [`pandas.infer_freq`](https://pandas.pydata.org/docs/reference/api/pandas.infer_freq.html).
|
| 1693 |
+
- There exists at least one column of type `Sequence` with numeric (`float`, `double`, or `int`) dtype. These columns can be interpreted as target time series.
|
| 1694 |
+
- For each row, all columns of type `Sequence` have same length.
|
| 1695 |
+
- Remaining columns of types other than `Sequence` (e.g., `string` or `float`) can be interpreted as static covariates.
|
| 1696 |
+
|
| 1697 |
+
Datasets can be loaded using the 🤗 [`datasets`](https://huggingface.co/docs/datasets/en/index) library
|
| 1698 |
+
```python
|
| 1699 |
+
import datasets
|
| 1700 |
+
|
| 1701 |
+
ds = datasets.load_dataset("autogluon/chronos_datasets", "m4_daily", split="train")
|
| 1702 |
+
ds.set_format("numpy") # sequences returned as numpy arrays
|
| 1703 |
+
```
|
| 1704 |
+
|
| 1705 |
+
> **NOTE:** The `train` split of all datasets contains the full time series and has no relation to the train/test split used in the Chronos paper.
|
| 1706 |
+
|
| 1707 |
+
|
| 1708 |
+
Example entry in the `m4_daily` dataset
|
| 1709 |
+
```python
|
| 1710 |
+
>>> ds[0]
|
| 1711 |
+
{'id': 'T000000',
|
| 1712 |
+
'timestamp': array(['1994-03-01T12:00:00.000', '1994-03-02T12:00:00.000',
|
| 1713 |
+
'1994-03-03T12:00:00.000', ..., '1996-12-12T12:00:00.000',
|
| 1714 |
+
'1996-12-13T12:00:00.000', '1996-12-14T12:00:00.000'],
|
| 1715 |
+
dtype='datetime64[ms]'),
|
| 1716 |
+
'target': array([1017.1, 1019.3, 1017. , ..., 2071.4, 2083.8, 2080.6], dtype=float32),
|
| 1717 |
+
'category': 'Macro'}
|
| 1718 |
+
```
|
| 1719 |
+
|
| 1720 |
+
### Converting to pandas
|
| 1721 |
+
We can easily convert data in such format to a long format data frame
|
| 1722 |
+
```python
|
| 1723 |
+
def to_pandas(ds: datasets.Dataset) -> "pd.DataFrame":
|
| 1724 |
+
"""Convert dataset to long data frame format."""
|
| 1725 |
+
sequence_columns = [col for col in ds.features if isinstance(ds.features[col], datasets.Sequence)]
|
| 1726 |
+
return ds.to_pandas().explode(sequence_columns).infer_objects()
|
| 1727 |
+
```
|
| 1728 |
+
Example output
|
| 1729 |
+
```python
|
| 1730 |
+
>>> print(to_pandas(ds).head())
|
| 1731 |
+
id timestamp target category
|
| 1732 |
+
0 T000000 1994-03-01 12:00:00 1017.1 Macro
|
| 1733 |
+
1 T000000 1994-03-02 12:00:00 1019.3 Macro
|
| 1734 |
+
2 T000000 1994-03-03 12:00:00 1017.0 Macro
|
| 1735 |
+
3 T000000 1994-03-04 12:00:00 1019.2 Macro
|
| 1736 |
+
4 T000000 1994-03-05 12:00:00 1018.7 Macro
|
| 1737 |
+
```
|
| 1738 |
+
|
| 1739 |
+
|
| 1740 |
+
### Dealing with large datasets
|
| 1741 |
+
Note that some datasets, such as subsets of WeatherBench, are extremely large (~100GB). To work with them efficiently, we recommend either loading them from disk (files will be downloaded to disk, but won't be all loaded into memory)
|
| 1742 |
+
```python
|
| 1743 |
+
ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_daily", keep_in_memory=False, split="train")
|
| 1744 |
+
```
|
| 1745 |
+
or, for the largest datasets like `weatherbench_hourly_temperature`, reading them in streaming format (chunks will be downloaded one at a time)
|
| 1746 |
+
```python
|
| 1747 |
+
ds = datasets.load_dataset("autogluon/chronos_datasets", "weatherbench_hourly_temperature", streaming=True, split="train")
|
| 1748 |
+
```
|
| 1749 |
+
|
| 1750 |
+
## Chronos training corpus with TSMixup & KernelSynth
|
| 1751 |
+
The training corpus used for training the Chronos models can be loaded via the configs `training_corpus_tsmixup_10m` (10M TSMixup augmentations of real-world data) and `training_corpus_kernel_synth_1m` (1M synthetic time series generated with KernelSynth), e.g.,
|
| 1752 |
+
```python
|
| 1753 |
+
ds = datasets.load_dataset("autogluon/chronos_datasets", "training_corpus_tsmixup_10m", streaming=True, split="train")
|
| 1754 |
+
```
|
| 1755 |
+
Note that since data in the training corpus was obtained by combining various synthetic & real-world time series, the timestamps contain dummy values that have no connection to the original data.
|
| 1756 |
+
|
| 1757 |
+
|
| 1758 |
+
## License
|
| 1759 |
+
Different datasets available in this collection are distributed under different open source licenses. Please see `ds.info.license` and `ds.info.homepage` for each individual dataset.
|
| 1760 |
+
|
| 1761 |
+
## Citation
|
| 1762 |
+
|
| 1763 |
+
If you find these datasets useful for your research, please consider citing the associated paper:
|
| 1764 |
+
```markdown
|
| 1765 |
+
@article{ansari2024chronos,
|
| 1766 |
+
author = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Wang, Hao and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
|
| 1767 |
+
title = {Chronos: Learning the Language of Time Series},
|
| 1768 |
+
journal = {arXiv preprint arXiv:2403.07815},
|
| 1769 |
+
year = {2024}
|
| 1770 |
+
}
|
| 1771 |
+
```
|
dominick/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:098ea1ba7c2343f2ffa696a7388beda1ac4e0446af57291a1a7c6f7442f8ba1f
|
| 3 |
+
size 60199910
|
electricity_15min/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00016bc6a1abb9c759aa7c72bddc538d4934353afa9c0518ac9080850ff585f8
|
| 3 |
+
size 284497403
|
ercot/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2484d08da8bac619546eca00ab86d987a559e02e413c33c512d3ca6552877a58
|
| 3 |
+
size 14504261
|
exchange_rate/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c214a83fe8d21ef6aea8a230d9131601e5a0a0157b1b0c713470974f1e565edc
|
| 3 |
+
size 401501
|
m4_daily/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:871f418ed99e8cc8433cc03f4a3e8e2c2387b31fa4fee8b36f6d062df38fb87b
|
| 3 |
+
size 65546675
|
m4_hourly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ecf702e63a3ebfd5b0866cec8c2448fcc9fc5a52584480885a5142d34061d36f
|
| 3 |
+
size 1336971
|
m4_monthly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:15576f826405d4a35fe7d264b2a377ef2407d7f3370783d274542b29792c0ee8
|
| 3 |
+
size 52772258
|
m4_quarterly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a73cd1347c4da84eedfe90ff44858a3a1198fbdcbfb8d7ab5c46c2d65cfde217
|
| 3 |
+
size 13422579
|
m4_weekly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d4e7b9a0e920a932fc3e8da0a422058bfe6adcc8e9fedd28a343daf1a2f7b9e
|
| 3 |
+
size 2556691
|
m4_yearly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd77637b0b5c651da97c7fb8033b21766348917099e14746457e2a004341c14f
|
| 3 |
+
size 5488601
|
m5/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df93472c09b4cd7fcb5b5a2c863fc0827959d7015ba3a2c2b8f5fcf8bce3eff5
|
| 3 |
+
size 78063286
|
mexico_city_bikes/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d3bed5fd869b1a08af9399f2c5b850d666a763c8c1038ff636c6fa47aefc788
|
| 3 |
+
size 103206946
|
monash_australian_electricity/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba9cf43c70b00b2480199abae4a400d4b394229afb08217557d97dbb5ffd3c6a
|
| 3 |
+
size 16856156
|
monash_car_parts/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d31a7d55f41a3d326888fc50da9f8b0ba99b5014a4ab18d375876aa109c31fe
|
| 3 |
+
size 70278
|
monash_cif_2016/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c570a2f42b15adeba850d2d2f76b06469996fc81aa1ee92a1a1b3229ed00f6e
|
| 3 |
+
size 70876
|
monash_covid_deaths/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74b6e0c79e1eff821b4bcbc4d1b0a53674e6f22bf70dbd4495c7aa49baf46421
|
| 3 |
+
size 58957
|
monash_electricity_hourly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9a0bf2b13d6b4f93afbaa97b47db064a7ac7740f6c8e40f9a97261c475c9aee
|
| 3 |
+
size 31139117
|
monash_electricity_weekly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75bcd063612a657cfe19178d767fe89770b63e9fb5c606d50e9b6b1b7dea92cc
|
| 3 |
+
size 333563
|
monash_fred_md/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:55d622cf7a51cccb1fd4bdedd58f17a8409252450a20889e36bfa7fd811cae2e
|
| 3 |
+
size 412207
|
monash_hospital/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30835432b2abedd5ce22419cbd10cafa75d82053248d15232711c4cb1ec144a7
|
| 3 |
+
size 117038
|
monash_kdd_cup_2018/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1dab9ce582d1fbb0a99dcc5e8f44104871a95484ff4dae605f705a5abfd78a8c
|
| 3 |
+
size 8780105
|
monash_london_smart_meters/train-00000-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:461bafd74a385b1be117ad16f447d8df088ce9e90dee6bd125ce5e3d9541b39b
|
| 3 |
+
size 204153500
|
monash_london_smart_meters/train-00001-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f0e051e67d697d781eba863d59a07779c2f63252245b856a8f2b85d80abc3668
|
| 3 |
+
size 198328771
|
monash_london_smart_meters/train-00002-of-00003.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25b7024b9f50c8188be77a069c51d8b7ec86e8745d856fc7f934e6cbac747109
|
| 3 |
+
size 194906848
|
monash_m1_monthly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e55d14f1605e17b4841ecc64d5dfde507a6fb2a7596e6d246c0556fd6fa059be
|
| 3 |
+
size 244372
|
monash_m1_quarterly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0eaa36bbe95e310ee2679171b0151a368afd6e2a2edad13a942dbe658f44d1f
|
| 3 |
+
size 48439
|
monash_m1_yearly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7260590626a7b7395b3291a55d35bc399b12e6ed72ce93d83e324e78ef875097
|
| 3 |
+
size 30754
|
monash_m3_monthly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:880053cdc255c04f959225eca23db3371d9c3163075857582b19cfd702293b6e
|
| 3 |
+
size 589699
|
monash_m3_quarterly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:502ec27dca4d629e6eca0599f06915a2f4fd22dae2e374d4bd66fe437106b2a8
|
| 3 |
+
size 188543
|
monash_m3_yearly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48b346b4922133bc6d0b85a39835308a85dd4f7108f4d9ad18dcc695fe8f3696
|
| 3 |
+
size 100184
|
monash_nn5_weekly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4848302e4e5645187e425fcc09e4c7da0151f13d0c2fc65fd722f9956dd32c2
|
| 3 |
+
size 64620
|
monash_pedestrian_counts/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6bdda69390f539cd77a2b6c4833c577b2678b85ae1c9bb98fd43203b86ebd8e1
|
| 3 |
+
size 12377357
|
monash_rideshare/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:25012bbf8d99a4dfde57f5c7d212f03a039b7c36f9d110b22d18871af5e10404
|
| 3 |
+
size 781873
|
monash_saugeenday/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f56c40b85baf50902d26f0ecdb8037a1ca95841dc92bacd458cad7664bfcd42
|
| 3 |
+
size 222678
|
monash_temperature_rain/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dcbd2b694765dab947ba425e038b69e3183b272d480f42ff5d89899f01c0f094
|
| 3 |
+
size 44967856
|
monash_tourism_monthly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac8d1c6a87cbdea71c1327828c58d9628f0be3dd322da545e17425b427c898ee
|
| 3 |
+
size 334951
|
monash_tourism_quarterly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07069411c08f6781e15e6d42e93c6811e072e972003d42fe00a1e332b46d1051
|
| 3 |
+
size 177407
|
monash_tourism_yearly/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1a23bae41bc76d02db0b494cddd2adafa29c2d7ca260bbe0f62704419282b44a
|
| 3 |
+
size 81479
|
monash_traffic/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2ef1656931b3a33925817c461ccb724dfd19e948ca4c237ead59fc5e6be768f
|
| 3 |
+
size 52748547
|
monash_weather/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:50f7ebecd006b9bff3f5b872924efd1e8820bcaf0ab9973d10138924dc762643
|
| 3 |
+
size 133164027
|
nn5/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85051a7c1d000174e009fbb7ac9ecf076d375ae6ba598e2413f234091c763670
|
| 3 |
+
size 203096
|
solar/train-00000-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:26fa2494ac7b27ec3c2ed7af7cb6bac1b2cff360248a4b6b47f4e68c4083d474
|
| 3 |
+
size 167981038
|
solar/train-00001-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea3e11b53b899b542ea2160924ff03666e5f895ff5d8655cf3266772e87bbb67
|
| 3 |
+
size 169678766
|
solar/train-00002-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:561926b6b8208e5c0c9216674f0b2da8d2fa37af7d4e2beb5ba3d51abe2cd554
|
| 3 |
+
size 165665816
|
solar/train-00003-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fadceb4fee8232cbbb6edfa7a9d5c4094ef0cb8aee49bead112f807dfb034861
|
| 3 |
+
size 167599678
|
solar/train-00004-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c5b969d738f928657d51c01f3cd153d12f0c414bed71d177eff81fd9624d2ae9
|
| 3 |
+
size 167206006
|
solar/train-00005-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc7e87d7af9460b4a431b1c05f3d31d56f94cd615f99590795caea4c03912665
|
| 3 |
+
size 166650129
|
solar/train-00006-of-00009.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bbf71b7760b4b677b8932fa22cc8c1d15f1d4ef2edeefd04aecabf0e899a014e
|
| 3 |
+
size 166697112
|