--- language: - ar license: apache-2.0 task_categories: - multiple-choice - text-classification pretty_name: Sentiment Analysis MCQ Evaluation Dataset tags: - sentiment-analysis - mcq - financial - arabic - evaluation - benchmark configs: - config_name: default data_files: - split: test path: data/test-* dataset_info: features: - name: original_split dtype: string - name: choices sequence: string - name: text dtype: string - name: answer dtype: string - name: original_sentiment dtype: string - name: query dtype: string - name: id dtype: string - name: gold dtype: int64 - name: category dtype: string splits: - name: test num_bytes: 495875 num_examples: 80 download_size: 218370 dataset_size: 495875 --- # Sentiment Analysis MCQ Evaluation Dataset Validation and test splits for financial sentiment analysis in MCQ format. ## Dataset Structure - **Format**: Multiple choice questions - **Language**: Arabic - **Domain**: Financial reports - **Task**: Sentiment classification - **Validation**: 20 examples - **Test**: 20 examples ## Fields - `id`: Unique identifier - `query`: Full MCQ prompt - `answer`: Correct answer letter - `text`: Question text - `choices`: Answer options [a, b, c] - `gold`: Correct answer index - `category`: Report category - `original_sentiment`: Ground truth sentiment ## Answer Mapping - a) positive - gold: 0 - b) negative - gold: 1 - c) neutral - gold: 2 ## Usage ```python from datasets import load_dataset dataset = load_dataset("SahmBenchmark/Sentiment_Analysis_MCQ_eval") test_data = dataset['test'] for example in test_data: print(f"Question: {example['text']}") print(f"Choices: {example['choices']}") print(f"Correct: {example['answer']} (index: {example['gold']})") ```