--- license: mit tags: - modular-intelligence - reasoning - structure - transformers - experimental base_model: openai-community/gpt2 pipeline_tag: text-generation language: en --- # Modular Intelligence Modular Intelligence is a lightweight reasoning framework built on top of a language model. It provides **Modules** (task-specific lenses), **Checkers** (second-pass reviewers), **Contracts** (structured output sections), and optional **Routing** (automatic module selection). The base model is GPT-2, but the architecture is model-agnostic—any LLM can be plugged in. --- ## Features ### Modules Task-specific reasoning modes. Examples: - **Analysis Note** – explanation and breakdown of concepts - **Document Explainer** – summaries of contracts, policies, articles - **Strategy Memo** – Options → Recommendation → Risks → Next Steps - **System Blueprint** – workflow / system design - **Brainstorm** – structured idea generation - **Message Reply** – concise responses for emails, posts, chats ### Checkers A second pass that evaluates: - correctness - clarity - missing pieces - contradictions ### Contracts Every module produces a fixed output template. This ensures reproducible structure and reduces variance. ### Router Optional automatic module selection based on prompt classification. --- ## Usage ### Python ```python from app import run_module result = run_module( module="StrategyMemo", prompt="Should we expand operations to Region X next quarter?" ) print(result)