Update README.md
Browse files
README.md
CHANGED
|
@@ -1,334 +1,136 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
---
|
| 17 |
-
library_name: transformers
|
| 18 |
-
license: mit
|
| 19 |
-
base_model: openai-community/gpt2
|
| 20 |
-
language:
|
| 21 |
-
- en
|
| 22 |
-
tags:
|
| 23 |
-
- modular-intelligence
|
| 24 |
-
- text-generation
|
| 25 |
-
- structured-reasoning
|
| 26 |
-
- experimental
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
# Modular Intelligence (GPT-2 baseline)
|
| 30 |
-
|
| 31 |
-
This repository is an **experimental baseline** for **Modular Intelligence** built on top of `openai-community/gpt2`.
|
| 32 |
-
|
| 33 |
-
The goal is **not** to claim that GPT-2 is “intelligent”, but to show how a **small, simple model** can be wrapped inside a **modular reasoning architecture**:
|
| 34 |
-
|
| 35 |
-
- **Modules**: small, single-purpose “skills” (e.g. analysis note, strategy memo).
|
| 36 |
-
- **Checkers**: strict reviewers that check the output of a module.
|
| 37 |
-
- **Structured outputs**: fixed sections like CONTEXT / OPTIONS / RISKS / NEXT STEPS.
|
| 38 |
-
|
| 39 |
-
Later, this same architecture can be reused with much stronger models.
|
| 40 |
|
| 41 |
---
|
| 42 |
|
| 43 |
-
##
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
---
|
| 57 |
|
| 58 |
-
##
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
1. **Fixed module types**
|
| 65 |
-
For example:
|
| 66 |
-
- `analysis_note_v1`
|
| 67 |
-
- `document_explainer_v1`
|
| 68 |
-
- `strategy_memo_v1`
|
| 69 |
-
- `message_reply_v1`
|
| 70 |
-
- `profile_application_v1`
|
| 71 |
-
- `system_blueprint_v1`
|
| 72 |
-
- `modular_brainstorm_v1`
|
| 73 |
-
|
| 74 |
-
2. **Fixed output sections**
|
| 75 |
-
Each module must respond in a strict, labelled format. Example (Strategy Memo):
|
| 76 |
-
|
| 77 |
-
- CONTEXT
|
| 78 |
-
- OBJECTIVE
|
| 79 |
-
- CONSTRAINTS
|
| 80 |
-
- OPTIONS
|
| 81 |
-
- RECOMMENDATION
|
| 82 |
-
- RISKS
|
| 83 |
-
- NEXT_ACTIONS
|
| 84 |
-
|
| 85 |
-
3. **Paired checkers**
|
| 86 |
-
Certain modules have a checker module that:
|
| 87 |
-
- Re-reads the original task
|
| 88 |
-
- Reviews the draft output
|
| 89 |
-
- Returns a verdict + issues + suggested fixes
|
| 90 |
-
|
| 91 |
-
4. **Use pattern**
|
| 92 |
-
Instead of “just generating text”, you:
|
| 93 |
-
- Call a **module** with structured inputs
|
| 94 |
-
- Get a **structured output**
|
| 95 |
-
- Optionally call a **checker** on that output
|
| 96 |
-
|
| 97 |
-
So the “intelligence” here is in the **architecture and prompts**, not in new weights.
|
| 98 |
|
| 99 |
---
|
| 100 |
|
| 101 |
-
##
|
| 102 |
-
|
| 103 |
-
This repository **does not introduce** a new training dataset and **does not re-train** GPT-2.
|
| 104 |
-
|
| 105 |
-
- **Base model**: `openai-community/gpt2`
|
| 106 |
-
- **Training objective**: next-token prediction (causal language modeling)
|
| 107 |
-
- **Original GPT-2 pretraining data** (by OpenAI, not included here):
|
| 108 |
-
- Large, general-domain English web corpus (“WebText”)
|
| 109 |
-
- ~40 GB of text from web pages linked from Reddit posts with score ≥ 3
|
| 110 |
-
- Mixed content (news, blogs, forums, technical/non-technical)
|
| 111 |
-
|
| 112 |
-
In this repository:
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
- The **module prompts** (how we talk to the model)
|
| 117 |
-
- The **checker prompts** (how we review its answers)
|
| 118 |
-
- The **fixed output formats**
|
| 119 |
-
|
| 120 |
-
No new datasets are uploaded or used for further fine-tuning inside this repo.
|
| 121 |
|
| 122 |
---
|
| 123 |
|
| 124 |
-
##
|
| 125 |
-
|
| 126 |
-
### Generator modules
|
| 127 |
-
|
| 128 |
-
Each generator is a “skill” with a fixed format.
|
| 129 |
-
|
| 130 |
-
1. **Analysis Note (`analysis_note_v1`)**
|
| 131 |
-
|
| 132 |
-
- **Inputs**:
|
| 133 |
-
- `context` – short description of the situation or text
|
| 134 |
-
- `questions` – what you want to understand
|
| 135 |
-
- `constraints` – any limits (time, style, scope)
|
| 136 |
-
|
| 137 |
-
- **Outputs (sections)**:
|
| 138 |
-
- CONTEXT
|
| 139 |
-
- QUESTIONS
|
| 140 |
-
- FRAMEWORK
|
| 141 |
-
- ANALYSIS
|
| 142 |
-
- CONCLUSION
|
| 143 |
-
- NEXT_STEPS
|
| 144 |
-
|
| 145 |
-
2. **Document Explainer (`document_explainer_v1`)**
|
| 146 |
-
|
| 147 |
-
- **Inputs**:
|
| 148 |
-
- `document_text`
|
| 149 |
-
- `focus`
|
| 150 |
-
- `audience`
|
| 151 |
-
|
| 152 |
-
- **Outputs**:
|
| 153 |
-
- SNAPSHOT
|
| 154 |
-
- KEY_POINTS
|
| 155 |
-
- STRUCTURE
|
| 156 |
-
- DETAILED_EXPLANATION
|
| 157 |
-
- IMPLICATIONS
|
| 158 |
-
- ACTIONS
|
| 159 |
-
|
| 160 |
-
3. **Strategy Memo (`strategy_memo_v1`)**
|
| 161 |
-
|
| 162 |
-
- **Inputs**:
|
| 163 |
-
- `context`
|
| 164 |
-
- `objective`
|
| 165 |
-
- `constraints`
|
| 166 |
-
|
| 167 |
-
- **Outputs**:
|
| 168 |
-
- CONTEXT
|
| 169 |
-
- OBJECTIVE
|
| 170 |
-
- CONSTRAINTS
|
| 171 |
-
- OPTIONS
|
| 172 |
-
- RECOMMENDATION
|
| 173 |
-
- RISKS
|
| 174 |
-
- NEXT_ACTIONS
|
| 175 |
-
|
| 176 |
-
4. **Message / Post Reply (`message_reply_v1`)**
|
| 177 |
-
|
| 178 |
-
- **Inputs**:
|
| 179 |
-
- `source_text`
|
| 180 |
-
- `your_angle`
|
| 181 |
-
- `tone_notes`
|
| 182 |
-
|
| 183 |
-
- **Outputs**:
|
| 184 |
-
- DRAFT_REPLY
|
| 185 |
-
|
| 186 |
-
5. **Profile / Application Draft (`profile_application_v1`)**
|
| 187 |
-
|
| 188 |
-
- **Inputs**:
|
| 189 |
-
- `target_role_or_goal`
|
| 190 |
-
- `your_background`
|
| 191 |
-
- `audience`
|
| 192 |
-
|
| 193 |
-
- **Outputs**:
|
| 194 |
-
- POSITIONING
|
| 195 |
-
- KEY_POINTS
|
| 196 |
-
- FULL_DRAFT
|
| 197 |
-
|
| 198 |
-
6. **System / Architecture Blueprint (`system_blueprint_v1`)**
|
| 199 |
-
|
| 200 |
-
- **Inputs**:
|
| 201 |
-
- `objective`
|
| 202 |
-
- `current_state`
|
| 203 |
-
- `constraints`
|
| 204 |
-
|
| 205 |
-
- **Outputs**:
|
| 206 |
-
- OBJECTIVE
|
| 207 |
-
- CURRENT_STATE
|
| 208 |
-
- COMPONENTS
|
| 209 |
-
- FLOWS
|
| 210 |
-
- RISKS
|
| 211 |
-
- IMPROVEMENTS
|
| 212 |
-
- NEXT_STEPS
|
| 213 |
-
|
| 214 |
-
7. **Modular Brainstorm (`modular_brainstorm_v1`)**
|
| 215 |
-
|
| 216 |
-
- **Inputs**:
|
| 217 |
-
- `problem_or_domain`
|
| 218 |
-
- `goal`
|
| 219 |
-
|
| 220 |
-
- **Outputs**:
|
| 221 |
-
- OBJECTIVE
|
| 222 |
-
- CURRENT
|
| 223 |
-
- MODULES
|
| 224 |
-
- CHECKERS
|
| 225 |
-
- DATA_NEEDS
|
| 226 |
-
- NEXT_STEPS
|
| 227 |
-
|
| 228 |
-
---
|
| 229 |
-
|
| 230 |
-
### Checker modules
|
| 231 |
-
|
| 232 |
-
Checkers are “reviewers” that inspect generated outputs.
|
| 233 |
-
|
| 234 |
-
Examples:
|
| 235 |
-
|
| 236 |
-
1. **Analysis Note Checker (`analysis_note_checker_v1`)**
|
| 237 |
-
|
| 238 |
-
- **Inputs**:
|
| 239 |
-
- `original_task`
|
| 240 |
-
- `draft_output`
|
| 241 |
-
|
| 242 |
-
- **Outputs**:
|
| 243 |
-
- VERDICT
|
| 244 |
-
- STRUCTURE
|
| 245 |
-
- CLARITY
|
| 246 |
-
- ALIGNMENT
|
| 247 |
-
- GAPS
|
| 248 |
-
- FIXES
|
| 249 |
-
|
| 250 |
-
2. **Document Explainer Checker (`document_explainer_checker_v1`)**
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
- VERDICT
|
| 262 |
-
- OBJECTIVE_ALIGNMENT
|
| 263 |
-
- CONSTRAINT_HANDLING
|
| 264 |
-
- OPTION_QUALITY
|
| 265 |
-
- RISKS
|
| 266 |
-
- FIXES
|
| 267 |
-
|
| 268 |
-
4. **Style & Voice Checker (`style_voice_checker_v1`)**
|
| 269 |
-
|
| 270 |
-
- VERDICT
|
| 271 |
-
- STYLE_MATCH
|
| 272 |
-
- TONE
|
| 273 |
-
- REDUNDANCY
|
| 274 |
-
- SUGGESTIONS
|
| 275 |
|
| 276 |
-
|
| 277 |
|
| 278 |
-
|
| 279 |
-
- ALIGNMENT
|
| 280 |
-
- SIGNAL
|
| 281 |
-
- CLARITY
|
| 282 |
-
- FIXES
|
| 283 |
|
| 284 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
-
|
| 287 |
-
- COHERENCE
|
| 288 |
-
- GAPS
|
| 289 |
-
- FLOW_ISSUES
|
| 290 |
-
- RISKS
|
| 291 |
-
- FIXES
|
| 292 |
|
| 293 |
---
|
| 294 |
|
| 295 |
-
##
|
| 296 |
-
|
| 297 |
-
You can treat this model like any GPT-2 text generator, **but** if you want Modular Intelligence behaviour:
|
| 298 |
|
| 299 |
-
|
| 300 |
-
2. Build a prompt that:
|
| 301 |
-
- States the module name
|
| 302 |
-
- Lists the inputs clearly
|
| 303 |
-
- Lists the required output sections
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
A reference implementation and UI are provided in the accompanying Hugging Face Space (if linked), but the pattern can be re-implemented in any environment.
|
| 311 |
|
| 312 |
---
|
| 313 |
|
| 314 |
-
##
|
| 315 |
-
|
| 316 |
-
- GPT-2 is **small and outdated** by modern standards.
|
| 317 |
-
- It will:
|
| 318 |
-
- Hallucinate
|
| 319 |
-
- Get facts wrong
|
| 320 |
-
- Sometimes ignore structure
|
| 321 |
-
- Struggle with long contexts
|
| 322 |
|
| 323 |
-
The
|
| 324 |
|
| 325 |
-
|
|
|
|
|
|
|
| 326 |
|
| 327 |
---
|
| 328 |
|
| 329 |
-
##
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modular Intelligence
|
| 2 |
+
A Small but Complete Reasoning System Built on Top of a Language Model
|
| 3 |
|
| 4 |
+
## System-Level View (60 Seconds)
|
| 5 |
|
| 6 |
+
This repository is not a standard GPT-2 model.
|
| 7 |
+
It is a compact reasoning system built on top of an LLM, using:
|
| 8 |
|
| 9 |
+
- Modules – structured reasoning lenses
|
| 10 |
+
- Checkers – strict second-pass reviewers
|
| 11 |
+
- Contracts – fixed output sections for every module
|
| 12 |
+
- Optional Router – automatic module selection from free-form tasks
|
| 13 |
|
| 14 |
+
Pipeline:
|
| 15 |
|
| 16 |
+
**Task → Lens (Module) → Structured Output → Checker (Optional)**
|
| 17 |
|
| 18 |
+
The LLM engine is replaceable; the architecture is the system.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
---
|
| 21 |
|
| 22 |
+
## Architecture
|
| 23 |
+
|
| 24 |
+
+—————————————————————+
|
| 25 |
+
| MODULAR INTELLIGENCE |
|
| 26 |
+
+—————————————————————+
|
| 27 |
+
| User Task |
|
| 28 |
+
| | |
|
| 29 |
+
| v |
|
| 30 |
+
| [Auto-router or manual module selection] |
|
| 31 |
+
| | |
|
| 32 |
+
| v |
|
| 33 |
+
| +———————–+ +————————+ |
|
| 34 |
+
| | GENERATOR MODULE | ––> | CHECKER MODULE | |
|
| 35 |
+
| | (structured output) | | (optional verification)| |
|
| 36 |
+
| +———————–+ +————————+ |
|
| 37 |
+
| | ^ |
|
| 38 |
+
| v | |
|
| 39 |
+
| Structured Output Feedback / Fix Ideas |
|
| 40 |
+
+—————————————————————+
|
| 41 |
|
| 42 |
---
|
| 43 |
|
| 44 |
+
## Repository Contents
|
| 45 |
|
| 46 |
+
- `modules.json` — all modules, inputs, sections, checkers
|
| 47 |
+
- `app.py` — Gradio UI with optional auto-routing
|
| 48 |
+
- Model card
|
| 49 |
+
- GPT-2 base model (fully swappable)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
---
|
| 52 |
|
| 53 |
+
## Problem This Solves
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
Standard LLMs: unstructured text, drift, no audit trail.
|
| 56 |
+
Modular Intelligence: task decomposition, structured reasoning, verification, consistency, interpretability.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
---
|
| 59 |
|
| 60 |
+
## Modules (Lenses)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
| Module | Use |
|
| 63 |
+
|--------|-----|
|
| 64 |
+
| Analysis Note | Explain or break down text/situations |
|
| 65 |
+
| Document Explainer | Summaries of contracts/policies/articles |
|
| 66 |
+
| Strategy Memo | Options → Recommendation → Risks → Next Steps |
|
| 67 |
+
| Message/Post Reply | Structured replies |
|
| 68 |
+
| Profile/Application | Bios, cover letters, statements |
|
| 69 |
+
| System Blueprint | Design or improve systems and workflows |
|
| 70 |
+
| Modular Brainstorm | Decompose problems into modules/checkers |
|
| 71 |
|
| 72 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
## Checker Layer
|
| 75 |
|
| 76 |
+
Checkers produce:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
- VERDICT
|
| 79 |
+
- ALIGNMENT
|
| 80 |
+
- STRUCTURE
|
| 81 |
+
- GAPS
|
| 82 |
+
- FIXES
|
| 83 |
|
| 84 |
+
Implements: **Reason → Critique → Refine**.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
---
|
| 87 |
|
| 88 |
+
## End-to-End Example
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
Task: “Should we expand into a new city in 6 months?”
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
1. Select `strategy_memo_v1`
|
| 93 |
+
2. Fill: context, objective, constraints
|
| 94 |
+
3. Run → structured memo with required sections
|
| 95 |
+
4. Run checker → verdict + issues + fixes
|
|
|
|
|
|
|
| 96 |
|
| 97 |
---
|
| 98 |
|
| 99 |
+
## Auto-Routing (Optional)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
The provided `app.py` includes an **Auto-Route** tab:
|
| 102 |
|
| 103 |
+
1. Paste free-form task
|
| 104 |
+
2. Zero-shot classifier ranks modules
|
| 105 |
+
3. Jump directly to best lens
|
| 106 |
|
| 107 |
---
|
| 108 |
|
| 109 |
+
## Code Usage
|
| 110 |
+
|
| 111 |
+
```python
|
| 112 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 113 |
+
|
| 114 |
+
tok = AutoTokenizer.from_pretrained("botbottingbot/Modular_Intelligence")
|
| 115 |
+
model = AutoModelForCausalLM.from_pretrained("botbottingbot/Modular_Intelligence")
|
| 116 |
+
|
| 117 |
+
prompt = """
|
| 118 |
+
MODULE: Strategy Memo
|
| 119 |
+
INPUTS:
|
| 120 |
+
CONTEXT: We are expanding to City X.
|
| 121 |
+
OBJECTIVE: Decide whether to enter within 6 months.
|
| 122 |
+
CONSTRAINTS: Budget limits; regulatory uncertainty.
|
| 123 |
+
|
| 124 |
+
OUTPUT SECTIONS:
|
| 125 |
+
- CONTEXT
|
| 126 |
+
- OBJECTIVE
|
| 127 |
+
- CONSTRAINTS
|
| 128 |
+
- OPTIONS
|
| 129 |
+
- RECOMMENDATION
|
| 130 |
+
- RISKS
|
| 131 |
+
- NEXT_ACTIONS
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
inp = tok(prompt, return_tensors="pt")
|
| 135 |
+
out = model.generate(**inp, max_new_tokens=250)
|
| 136 |
+
print(tok.decode(out[0], skip_special_tokens=
|