botbottingbot commited on
Commit
2d1dafb
·
verified ·
1 Parent(s): 205980f

Create Model_card.md

Browse files
Files changed (1) hide show
  1. Model_card.md +139 -0
Model_card.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modular Intelligence Demo — Model Card
2
+
3
+ ## Overview
4
+
5
+ This Space demonstrates a **Modular Intelligence** architecture built on top of a small, open text-generation model (default: `gpt2` from Hugging Face Transformers).
6
+
7
+ The focus is on:
8
+
9
+ - Structured, modular reasoning patterns
10
+ - Separation of **generators** (modules) and **checkers** (verifiers)
11
+ - Deterministic output formats
12
+ - Domain-agnostic usage
13
+
14
+ The underlying model is intentionally small and generic so the architecture can run on free CPU tiers and be easily swapped for stronger models.
15
+
16
+ ---
17
+
18
+ ## Model Details
19
+
20
+ ### Base Model
21
+
22
+ - **Name:** `gpt2`
23
+ - **Type:** Causal language model (decoder-only Transformer)
24
+ - **Provider:** Hugging Face (OpenAI GPT-2 weights via HF Hub)
25
+ - **Task:** Text generation
26
+
27
+ ### Intended Use in This Space
28
+
29
+ The model is used as a **generic language engine** behind:
30
+
31
+ - Generator modules:
32
+ - Analysis Note
33
+ - Document Explainer
34
+ - Strategy Memo
35
+ - Message/Post Reply
36
+ - Profile/Application Draft
37
+ - System/Architecture Blueprint
38
+ - Modular Brainstorm
39
+
40
+ - Checker modules:
41
+ - Analysis Note Checker
42
+ - Document Explainer Checker
43
+ - Strategy Memo Checker
44
+ - Style & Voice Checker
45
+ - Profile Checker
46
+ - System Checker
47
+
48
+ The intelligence comes from the **module specifications and checker prompts**, not from the raw model alone.
49
+
50
+ ---
51
+
52
+ ## Intended Use Cases
53
+
54
+ This demo is intended for:
55
+
56
+ - Exploring **Modular Intelligence** as an architecture:
57
+ - Module contracts (inputs → structured outputs)
58
+ - Paired checkers for verification
59
+ - Stable output formats
60
+ - Educational and experimental use:
61
+ - Showing how to structure reasoning tasks
62
+ - Demonstrating generators vs checkers
63
+ - Prototyping new modules for any domain
64
+
65
+ It is **not** intended as a production-grade reasoning system in its current form.
66
+
67
+ ---
68
+
69
+ ## Out-of-Scope / Misuse
70
+
71
+ This setup and base model **should not** be relied on for:
72
+
73
+ - High-stakes decisions (law, medicine, finance, safety)
74
+ - Factual claims where accuracy is critical
75
+ - Personal advice with real-world consequences
76
+ - Any use requiring guarantees of truth, completeness, or legal/compliance correctness
77
+
78
+ All outputs must be **reviewed by a human** before use.
79
+
80
+ ---
81
+
82
+ ## Limitations
83
+
84
+ ### Model-Level Limitations
85
+
86
+ - `gpt2` is:
87
+ - Small by modern standards
88
+ - Trained on older, general web data
89
+ - Not tuned for instruction-following
90
+ - Not tuned for safety or domain-specific reasoning
91
+
92
+ Expect:
93
+
94
+ - Hallucinations / fabricated details
95
+ - Incomplete or shallow analysis
96
+ - Inconsistent adherence to strict formats
97
+ - Limited context length
98
+
99
+ ### Architecture-Level Limitations
100
+
101
+ Even with Modular Intelligence patterns:
102
+
103
+ - Checkers are still language-model-based
104
+ - Verification is heuristic, not formal proof
105
+ - Complex domains require domain experts to design the modules/checkers
106
+ - This Space does not store memory, logs, or regression tests
107
+
108
+ ---
109
+
110
+ ## Ethical and Safety Considerations
111
+
112
+ - Do not treat outputs as professional advice.
113
+ - Do not use for:
114
+ - Discriminatory or harmful content
115
+ - Harassment
116
+ - Misinformation campaigns
117
+ - Make sure users know:
118
+ - This is an **architecture demo**, not a final product.
119
+ - All content is generated by a language model and may be wrong.
120
+
121
+ If you adapt this to high-stakes domains, you must:
122
+
123
+ - Swap in stronger, more aligned models
124
+ - Add strict validation layers
125
+ - Add logging, monitoring, and human review
126
+ - Perform domain-specific evaluations and audits
127
+
128
+ ---
129
+
130
+ ## How to Swap Models
131
+
132
+ You can replace `gpt2` with any compatible text-generation model:
133
+
134
+ 1. Edit `app.py`:
135
+
136
+ ```python
137
+ from transformers import pipeline
138
+
139
+ llm = pipeline("text-generation", model="gpt2", max_new_tokens=512)