File size: 9,496 Bytes
dea14e3 425725b dea14e3 425725b dea14e3 c1cb680 dea14e3 425725b c1cb680 425725b c1cb680 425725b cc41e10 c1cb680 425725b cc41e10 c1cb680 cc41e10 dea14e3 bb444e1 dea14e3 c1cb680 425725b c1cb680 bb444e1 dea14e3 425725b bb444e1 dea14e3 425725b bb444e1 425725b dea14e3 cc41e10 c1cb680 cc41e10 dea14e3 cc41e10 bb444e1 425725b cc41e10 dea14e3 425725b bb444e1 dea14e3 c1cb680 425725b dea14e3 425725b dea14e3 425725b dea14e3 cc41e10 425725b c1cb680 425725b dea14e3 c1cb680 cc41e10 c1cb680 425725b cc41e10 425725b dea14e3 425725b c1cb680 425725b c1cb680 425725b c1cb680 425725b c1cb680 cc41e10 425725b cc41e10 425725b dea14e3 425725b c1cb680 bb444e1 c1cb680 bb444e1 dea14e3 425725b c1cb680 dea14e3 bb444e1 425725b dea14e3 c1cb680 425725b c1cb680 425725b c1cb680 425725b cc41e10 dea14e3 cc41e10 dea14e3 425725b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import json
import os
import torch
from functools import partial
import gradio as gr
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
pipeline
)
# =============================================================
# LOAD MODULES.JSON
# =============================================================
with open("modules.json", "r", encoding="utf-8") as f:
MODULES = json.load(f)["modules"]
GENERATORS = [m for m in MODULES if m.get("type") == "generator"]
CHECKERS = {m["id"]: m for m in MODULES if m.get("type") == "checker"}
GEN_BY_ID = {m["id"]: m for m in GENERATORS}
LABEL_TO_ID = {m["label"]: m["id"] for m in GENERATORS}
LABEL_LIST = list(LABEL_TO_ID.keys())
# =============================================================
# BASE MODEL (ENGINE) — Can be swapped
# =============================================================
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
llm = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=300)
# =============================================================
# HYBRID ROUTER (RULES + ZERO-SHOT)
# =============================================================
# ----------- RULE-BASED ROUTER -----------
RULES = [
("contract", "document_explainer_v1"),
("agreement", "document_explainer_v1"),
("policy", "document_explainer_v1"),
("judgment", "document_explainer_v1"),
("options", "strategy_memo_v1"),
("trade-off", "strategy_memo_v1"),
("recommendation", "strategy_memo_v1"),
("compare", "strategy_memo_v1"),
("system", "system_blueprint_v1"),
("architecture", "system_blueprint_v1"),
("flow", "system_blueprint_v1"),
("analysis", "analysis_note_v1"),
("summarize", "analysis_note_v1"),
("explain", "analysis_note_v1"),
]
def rule_router(text: str):
t = text.lower()
for keyword, module_id in RULES:
if keyword in t:
return module_id
return None
# ----------- ZERO-SHOT ROUTER -----------
zero_shot_classifier = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli"
)
def zero_shot_route(text):
res = zero_shot_classifier(text, candidate_labels=LABEL_LIST, multi_label=False)
label = res["labels"][0]
module_id = LABEL_TO_ID[label]
scores = "\n".join([f"{l}: {s:.2f}" for l, s in zip(res["labels"], res["scores"])])
return label, module_id, scores
# ----------- HYBRID ROUTE CALL -----------
def hybrid_route(task: str):
if not task.strip():
return "No input", "", ""
route = rule_router(task)
if route:
return GEN_BY_ID[route]["label"], route, "Rule-based match"
return zero_shot_route(task)
# =============================================================
# DOMAIN HEAD LOADER (LoRA-STYLE ADAPTERS)
# =============================================================
ADAPTER_PATHS = {
"legal": "domain_heads/legal_head.pt",
"strategy": "domain_heads/strategy_head.pt",
"analysis": "domain_heads/analysis_head.pt",
"systems": "domain_heads/systems_head.pt",
}
def load_domain_adapter(domain: str):
if domain not in ADAPTER_PATHS:
return
path = ADAPTER_PATHS[domain]
if not os.path.exists(path):
return
adapter = torch.load(path, map_location="cpu")
with torch.no_grad():
for name, param in model.named_parameters():
if name in adapter:
param += adapter[name]
# =============================================================
# REASONING SCAFFOLDS
# =============================================================
# ----------- CHAIN-OF-THOUGHT -----------
def apply_cot(prompt: str) -> str:
return (
"Think step-by-step. Explain your reasoning before answering.\n\n"
+ prompt
+ "\n\nNow think step-by-step and answer:"
)
# ----------- CRITIQUE + REFINE LOOP -----------
critic = pipeline(
"text-generation",
model="openai-community/gpt2",
max_new_tokens=200,
do_sample=False
)
def critique(text: str) -> str:
prompt = (
"Review this draft. Identify unclear reasoning, gaps, contradictions.\n\n"
"DRAFT:\n" + text + "\n\nReturn critique only:\n"
)
out = critic(prompt)[0]["generated_text"]
return out[len(prompt):].strip() if out.startswith(prompt) else out.strip()
def refine(text: str, critique_text: str) -> str:
prompt = (
"Improve the draft using the critique. Fix gaps, strengthen logic.\n\n"
"CRITIQUE:\n" + critique_text +
"\n\nDRAFT:\n" + text +
"\n\nReturn improved output:\n"
)
out = critic(prompt)[0]["generated_text"]
return out[len(prompt):].strip() if out.startswith(prompt) else out.strip()
def critique_and_refine(text: str) -> str:
c = critique(text)
return refine(text, c)
# =============================================================
# LLM CALL + PROMPT BUILDING
# =============================================================
def call_llm(prompt: str) -> str:
out = llm(prompt, do_sample=False)[0]["generated_text"]
return out[len(prompt):].strip() if out.startswith(prompt) else out.strip()
def build_generator_prompt(module_id: str, *inputs: str) -> str:
m = GEN_BY_ID[module_id]
keys = list(m["input_placeholders"].keys())
vals = {k: inputs[i] if i < len(inputs) else "" for i, k in enumerate(keys)}
secs = m["output_sections"]
p = []
p.append(f"MODULE: {m['label']} (id={module_id})")
p.append("You must follow the structured reasoning format.\n")
p.append("INPUTS:")
for k, v in vals.items():
p.append(f"{k.upper()}: {v}")
p.append("\nOutput sections:")
for s in secs:
p.append(f"- {s}")
p.append("\nFormat exactly as:")
for s in secs:
p.append(f"{s}:\n[content]\n")
return "\n".join(p)
def build_checker_prompt(checker_id: str, *vals: str) -> str:
c = CHECKERS[checker_id]
secs = c["output_sections"]
if len(vals) < 2:
original = ""
draft = vals[0] if vals else ""
else:
original = "\n\n".join(vals[:-1])
draft = vals[-1]
p = []
p.append(f"CHECKER: {c['label']} (id={checker_id})")
p.append("Review for structure, alignment and reasoning quality.\n")
p.append("ORIGINAL TASK:\n" + original + "\n")
p.append("DRAFT OUTPUT:\n" + draft + "\n")
p.append("Sections required:")
for s in secs:
p.append(f"- {s}")
p.append("\nFormat:")
for s in secs:
p.append(f"{s}:\n[content]\n")
return "\n".join(p)
# =============================================================
# GENERATOR + CHECKER EXECUTION
# =============================================================
def run_generator(module_id: str, *inputs: str) -> str:
m = GEN_BY_ID[module_id]
if m.get("domain"):
load_domain_adapter(m["domain"])
prompt = build_generator_prompt(module_id, *inputs)
prompt = apply_cot(prompt)
draft = call_llm(prompt)
final = critique_and_refine(draft)
return final
def run_checker(checker_id: str, *inputs: str) -> str:
prompt = build_checker_prompt(checker_id, *inputs)
prompt = apply_cot(prompt)
return call_llm(prompt)
# =============================================================
# GRADIO UI
# =============================================================
def build_ui():
with gr.Blocks(title="Modular Intelligence — Unified System") as demo:
gr.Markdown("# Modular Intelligence\nUnified architecture with routing, adapters, and reasoning scaffolds.")
# ---------------- AUTO-ROUTE TAB ----------------
with gr.Tab("Auto-Route"):
task_box = gr.Textbox(label="Describe your task", lines=6)
out_name = gr.Textbox(label="Suggested Module", interactive=False)
out_id = gr.Textbox(label="Module ID", interactive=False)
out_scores = gr.Textbox(label="Routing Details", lines=12, interactive=False)
gr.Button("Classify Task").click(
fn=hybrid_route,
inputs=[task_box],
outputs=[out_name, out_id, out_scores],
)
# ---------------- MODULE TABS ----------------
for m in GENERATORS:
with gr.Tab(m["label"]):
gr.Markdown(f"**Module ID:** `{m['id']}` | **Domain:** `{m.get('domain','general')}`")
inputs = []
for key, placeholder in m["input_placeholders"].items():
t = gr.Textbox(label=key, placeholder=placeholder, lines=4)
inputs.append(t)
output = gr.Textbox(label="Generator Output", lines=18)
gr.Button("Run Module").click(
fn=partial(run_generator, m["id"]),
inputs=inputs,
outputs=output,
)
checker_id = m.get("checker_id")
if checker_id in CHECKERS:
check_out = gr.Textbox(label="Checker Output", lines=15)
gr.Button("Run Checker").click(
fn=partial(run_checker, checker_id),
inputs=inputs + [output],
outputs=check_out,
)
else:
gr.Markdown("_No checker for this module._")
return demo
if __name__ == "__main__":
ui = build_ui()
ui.launch() |