--- language: - en library_name: mlx tags: - glm - MOE - pruning - compression - mlx license: mit name: cerebras/Kimi-Linear-REAP-35B-A3B-Instruct description: 'This model was obtained by uniformly pruning 30% of experts in Kimi-Linear-48B-A3B-Instruct using the REAP method. ' readme: 'https://huggingface.co/cerebras/Kimi-Linear-REAP-35B-A3B-Instruct/main/README.md ' pipeline_tag: text-generation base_model: cerebras/Kimi-Linear-REAP-35B-A3B-Instruct --- # NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit This model [NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit](https://huggingface.co/NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit) was converted to MLX format from [cerebras/Kimi-Linear-REAP-35B-A3B-Instruct](https://huggingface.co/cerebras/Kimi-Linear-REAP-35B-A3B-Instruct) using mlx-lm version **0.28.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-Linear-REAP-35B-A3B-Instruct-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```