""" Quick loader for INT8 quantized HunyuanImage-3.0 model. Generated automatically by hunyuan_quantize_int8.py """ import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig def load_quantized_hunyuan_int8(model_path="A:\Comfy25\ComfyUI_windows_portable\ComfyUI\models\HunyuanImage-3-INT8"): """Load the INT8 quantized HunyuanImage-3.0 model.""" quant_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0, ) model = AutoModelForCausalLM.from_pretrained( model_path, quantization_config=quant_config, device_map="auto", # Distribute across GPU/CPU as needed trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="sdpa", ) # Load tokenizer model.load_tokenizer(model_path) return model if __name__ == "__main__": print("Loading INT8 quantized model...") model = load_quantized_hunyuan_int8() print("Model loaded successfully!") print(f"Device map: {model.hf_device_map}") # Check memory usage if torch.cuda.is_available(): print(f"GPU memory allocated: {torch.cuda.memory_allocated() / 1024**3:.2f} GB") print(f"GPU memory reserved: {torch.cuda.memory_reserved() / 1024**3:.2f} GB")