Upload 7 files
Browse files- .gitattributes +2 -0
- APE_backtranslate_evaluation1.ipynb +3 -0
- APE_tr1.csv +0 -0
- APE_tr2.ipynb +813 -0
- APR_tr2_2.ipynb +0 -0
- english_tohinglish_reverse_translation.ipynb +3 -0
- epoch40_APE_2_new.pt +3 -0
- epoch40_APE_2_new_reverse.pt +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
APE_backtranslate_evaluation1.ipynb filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
english_tohinglish_reverse_translation.ipynb filter=lfs diff=lfs merge=lfs -text
|
APE_backtranslate_evaluation1.ipynb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c1ed88dbfbb5f2e98d506e728891e10b732bbd5ad8ddfbc018c40001149a50b3
|
| 3 |
+
size 30785863
|
APE_tr1.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
APE_tr2.ipynb
ADDED
|
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"id": "9db57e75-ba95-4e96-836a-ce2eb9689c7b",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"!pip install torch\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"from torch import Tensor\n",
|
| 14 |
+
"import torch\n",
|
| 15 |
+
"import torch.nn as nn\n",
|
| 16 |
+
"from torch.nn import Transformer\n",
|
| 17 |
+
"import math\n",
|
| 18 |
+
"DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
|
| 19 |
+
"import os\n",
|
| 20 |
+
"from argparse import Namespace\n",
|
| 21 |
+
"from collections import Counter\n",
|
| 22 |
+
"import json\n",
|
| 23 |
+
"import re\n",
|
| 24 |
+
"import string\n",
|
| 25 |
+
"import datetime\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"import numpy as np\n",
|
| 28 |
+
"import pandas as pd\n",
|
| 29 |
+
"import torch\n",
|
| 30 |
+
"import torch.nn as nn\n",
|
| 31 |
+
"from torch.nn import functional as F\n",
|
| 32 |
+
"from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence\n",
|
| 33 |
+
"import torch.optim as optima\n",
|
| 34 |
+
"from torch.utils.data import Dataset, DataLoader\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"class Vocabulary(object):\n",
|
| 42 |
+
" \"\"\"Class to process text and extract vocabulary for mapping\"\"\"\n",
|
| 43 |
+
"\n",
|
| 44 |
+
" def __init__(self, token_to_idx=None):\n",
|
| 45 |
+
" \"\"\"\n",
|
| 46 |
+
" Args:\n",
|
| 47 |
+
" token_to_idx (dict): a pre-existing map of tokens to indices\n",
|
| 48 |
+
" \"\"\"\n",
|
| 49 |
+
"\n",
|
| 50 |
+
" if token_to_idx is None:\n",
|
| 51 |
+
" token_to_idx = {}\n",
|
| 52 |
+
" self._token_to_idx = token_to_idx\n",
|
| 53 |
+
"\n",
|
| 54 |
+
" self._idx_to_token = {idx: token \n",
|
| 55 |
+
" for token, idx in self._token_to_idx.items()}\n",
|
| 56 |
+
" \n",
|
| 57 |
+
" def to_serializable(self):\n",
|
| 58 |
+
" \"\"\" returns a dictionary that can be serialized \"\"\"\n",
|
| 59 |
+
" return {'token_to_idx': self._token_to_idx}\n",
|
| 60 |
+
"\n",
|
| 61 |
+
" @classmethod\n",
|
| 62 |
+
" def from_serializable(cls, contents):\n",
|
| 63 |
+
" \"\"\" instantiates the Vocabulary from a serialized dictionary \"\"\"\n",
|
| 64 |
+
" return cls(**contents)\n",
|
| 65 |
+
"\n",
|
| 66 |
+
" def add_token(self, token):\n",
|
| 67 |
+
" \"\"\"Update mapping dicts based on the token.\n",
|
| 68 |
+
"\n",
|
| 69 |
+
" Args:\n",
|
| 70 |
+
" token (str): the item to add into the Vocabulary\n",
|
| 71 |
+
" Returns:\n",
|
| 72 |
+
" index (int): the integer corresponding to the token\n",
|
| 73 |
+
" \"\"\"\n",
|
| 74 |
+
" if token in self._token_to_idx:\n",
|
| 75 |
+
" index = self._token_to_idx[token]\n",
|
| 76 |
+
" else:\n",
|
| 77 |
+
" index = len(self._token_to_idx)\n",
|
| 78 |
+
" self._token_to_idx[token] = index\n",
|
| 79 |
+
" self._idx_to_token[index] = token\n",
|
| 80 |
+
" return index\n",
|
| 81 |
+
" \n",
|
| 82 |
+
" def add_many(self, tokens):\n",
|
| 83 |
+
" \"\"\"Add a list of tokens into the Vocabulary\n",
|
| 84 |
+
" \n",
|
| 85 |
+
" Args:\n",
|
| 86 |
+
" tokens (list): a list of string tokens\n",
|
| 87 |
+
" Returns:\n",
|
| 88 |
+
" indices (list): a list of indices corresponding to the tokens\n",
|
| 89 |
+
" \"\"\"\n",
|
| 90 |
+
" return [self.add_token(token) for token in tokens]\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" def lookup_token(self, token):\n",
|
| 93 |
+
" \"\"\"Retrieve the index associated with the token \n",
|
| 94 |
+
" \n",
|
| 95 |
+
" Args:\n",
|
| 96 |
+
" token (str): the token to look up \n",
|
| 97 |
+
" Returns:\n",
|
| 98 |
+
" index (int): the index corresponding to the token\n",
|
| 99 |
+
" \"\"\"\n",
|
| 100 |
+
" return self._token_to_idx[token]\n",
|
| 101 |
+
"\n",
|
| 102 |
+
" def lookup_index(self, index):\n",
|
| 103 |
+
" \"\"\"Return the token associated with the index\n",
|
| 104 |
+
" \n",
|
| 105 |
+
" Args: \n",
|
| 106 |
+
" index (int): the index to look up\n",
|
| 107 |
+
" Returns:\n",
|
| 108 |
+
" token (str): the token corresponding to the index\n",
|
| 109 |
+
" Raises:\n",
|
| 110 |
+
" KeyError: if the index is not in the Vocabulary\n",
|
| 111 |
+
" \"\"\"\n",
|
| 112 |
+
" if index not in self._idx_to_token:\n",
|
| 113 |
+
" raise KeyError(\"the index (%d) is not in the Vocabulary\" % index)\n",
|
| 114 |
+
" return self._idx_to_token[index]\n",
|
| 115 |
+
"\n",
|
| 116 |
+
" def __str__(self):\n",
|
| 117 |
+
" return \"<Vocabulary(size=%d)>\" % len(self)\n",
|
| 118 |
+
"\n",
|
| 119 |
+
" def __len__(self):\n",
|
| 120 |
+
" return len(self._token_to_idx)\n",
|
| 121 |
+
" \n",
|
| 122 |
+
"\n",
|
| 123 |
+
"\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"class SequenceVocabulary(Vocabulary):\n",
|
| 127 |
+
" def __init__(self, token_to_idx=None, unk_token=\"<UNK>\",\n",
|
| 128 |
+
" mask_token=\"<MASK>\", begin_seq_token=\"<BEGIN>\",\n",
|
| 129 |
+
" end_seq_token=\"<END>\"):\n",
|
| 130 |
+
"\n",
|
| 131 |
+
" super(SequenceVocabulary, self).__init__(token_to_idx)\n",
|
| 132 |
+
"\n",
|
| 133 |
+
" self._mask_token = mask_token\n",
|
| 134 |
+
" self._unk_token = unk_token\n",
|
| 135 |
+
" self._begin_seq_token = begin_seq_token\n",
|
| 136 |
+
" self._end_seq_token = end_seq_token\n",
|
| 137 |
+
"\n",
|
| 138 |
+
" self.mask_index = self.add_token(self._mask_token)\n",
|
| 139 |
+
" self.unk_index = self.add_token(self._unk_token)\n",
|
| 140 |
+
" self.begin_seq_index = self.add_token(self._begin_seq_token)\n",
|
| 141 |
+
" self.end_seq_index = self.add_token(self._end_seq_token)\n",
|
| 142 |
+
"\n",
|
| 143 |
+
" def to_serializable(self):\n",
|
| 144 |
+
" contents = super(SequenceVocabulary, self).to_serializable()\n",
|
| 145 |
+
" contents.update({'unk_token': self._unk_token,\n",
|
| 146 |
+
" 'mask_token': self._mask_token,\n",
|
| 147 |
+
" 'begin_seq_token': self._begin_seq_token,\n",
|
| 148 |
+
" 'end_seq_token': self._end_seq_token})\n",
|
| 149 |
+
" return contents\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" def lookup_token(self, token):\n",
|
| 152 |
+
" \"\"\"Retrieve the index associated with the token \n",
|
| 153 |
+
" or the UNK index if token isn't present.\n",
|
| 154 |
+
" \n",
|
| 155 |
+
" Args:\n",
|
| 156 |
+
" token (str): the token to look up \n",
|
| 157 |
+
" Returns:\n",
|
| 158 |
+
" index (int): the index corresponding to the token\n",
|
| 159 |
+
" Notes:\n",
|
| 160 |
+
" `unk_index` needs to be >=0 (having been added into the Vocabulary) \n",
|
| 161 |
+
" for the UNK functionality \n",
|
| 162 |
+
" \"\"\"\n",
|
| 163 |
+
" if self.unk_index >= 0:\n",
|
| 164 |
+
" return self._token_to_idx.get(token, self.unk_index)\n",
|
| 165 |
+
" else:\n",
|
| 166 |
+
" return self._token_to_idx[token]\n",
|
| 167 |
+
" \n",
|
| 168 |
+
"\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"class NMTVectorizer(object):\n",
|
| 172 |
+
" \"\"\" The Vectorizer which coordinates the Vocabularies and puts them to use\"\"\" \n",
|
| 173 |
+
" def __init__(self, source_vocab, target_vocab, max_source_length, max_target_length):\n",
|
| 174 |
+
" \"\"\"\n",
|
| 175 |
+
" Args:\n",
|
| 176 |
+
" source_vocab (SequenceVocabulary): maps source words to integers\n",
|
| 177 |
+
" target_vocab (SequenceVocabulary): maps target words to integers\n",
|
| 178 |
+
" max_source_length (int): the longest sequence in the source dataset\n",
|
| 179 |
+
" max_target_length (int): the longest sequence in the target dataset\n",
|
| 180 |
+
" \"\"\"\n",
|
| 181 |
+
" self.source_vocab = source_vocab\n",
|
| 182 |
+
" self.target_vocab = target_vocab\n",
|
| 183 |
+
" \n",
|
| 184 |
+
" self.max_source_length = max_source_length\n",
|
| 185 |
+
" self.max_target_length = max_target_length\n",
|
| 186 |
+
" \n",
|
| 187 |
+
"\n",
|
| 188 |
+
" def _vectorize(self, indices, vector_length=-1, mask_index=0):\n",
|
| 189 |
+
" \"\"\"Vectorize the provided indices\n",
|
| 190 |
+
" \n",
|
| 191 |
+
" Args:\n",
|
| 192 |
+
" indices (list): a list of integers that represent a sequence\n",
|
| 193 |
+
" vector_length (int): an argument for forcing the length of index vector\n",
|
| 194 |
+
" mask_index (int): the mask_index to use; almost always 0\n",
|
| 195 |
+
" \"\"\"\n",
|
| 196 |
+
" if vector_length < 0:\n",
|
| 197 |
+
" vector_length = len(indices)\n",
|
| 198 |
+
" \n",
|
| 199 |
+
" vector = np.zeros(vector_length, dtype=np.int64)\n",
|
| 200 |
+
" vector[:len(indices)] = indices\n",
|
| 201 |
+
" vector[len(indices):] = mask_index\n",
|
| 202 |
+
"\n",
|
| 203 |
+
" return vector\n",
|
| 204 |
+
" \n",
|
| 205 |
+
" def _get_source_indices(self, text):\n",
|
| 206 |
+
" \"\"\"Return the vectorized source text\n",
|
| 207 |
+
" \n",
|
| 208 |
+
" Args:\n",
|
| 209 |
+
" text (str): the source text; tokens should be separated by spaces\n",
|
| 210 |
+
" Returns:\n",
|
| 211 |
+
" indices (list): list of integers representing the text\n",
|
| 212 |
+
" \"\"\"\n",
|
| 213 |
+
" indices = [self.source_vocab.begin_seq_index]\n",
|
| 214 |
+
" indices.extend(self.source_vocab.lookup_token(token) for token in text.split(\" \"))\n",
|
| 215 |
+
" indices.append(self.source_vocab.end_seq_index)\n",
|
| 216 |
+
" return indices\n",
|
| 217 |
+
" \n",
|
| 218 |
+
" def _get_target_indices(self, text):\n",
|
| 219 |
+
" \"\"\"Return the vectorized source text\n",
|
| 220 |
+
" \n",
|
| 221 |
+
" Args:\n",
|
| 222 |
+
" text (str): the source text; tokens should be separated by spaces\n",
|
| 223 |
+
" Returns:\n",
|
| 224 |
+
" a tuple: (x_indices, y_indices)\n",
|
| 225 |
+
" x_indices (list): list of integers representing the observations in target decoder \n",
|
| 226 |
+
" y_indices (list): list of integers representing predictions in target decoder\n",
|
| 227 |
+
" \"\"\"\n",
|
| 228 |
+
" indices = [self.target_vocab.lookup_token(token) for token in text.split(\" \")]\n",
|
| 229 |
+
" x_indices = [self.target_vocab.begin_seq_index] + indices\n",
|
| 230 |
+
" y_indices = indices + [self.target_vocab.end_seq_index]\n",
|
| 231 |
+
" return x_indices, y_indices\n",
|
| 232 |
+
" \n",
|
| 233 |
+
" def vectorize(self, source_text, target_text, use_dataset_max_lengths=True):\n",
|
| 234 |
+
" \"\"\"Return the vectorized source and target text\n",
|
| 235 |
+
" \n",
|
| 236 |
+
" The vetorized source text is just the a single vector.\n",
|
| 237 |
+
" The vectorized target text is split into two vectors in a similar style to \n",
|
| 238 |
+
" the surname modeling in Chapter 7.\n",
|
| 239 |
+
" At each timestep, the first vector is the observation and the second vector is the target. \n",
|
| 240 |
+
" \n",
|
| 241 |
+
" \n",
|
| 242 |
+
" Args:\n",
|
| 243 |
+
" source_text (str): text from the source language\n",
|
| 244 |
+
" target_text (str): text from the target language\n",
|
| 245 |
+
" use_dataset_max_lengths (bool): whether to use the global max vector lengths\n",
|
| 246 |
+
" Returns:\n",
|
| 247 |
+
" The vectorized data point as a dictionary with the keys: \n",
|
| 248 |
+
" source_vector, target_x_vector, target_y_vector, source_length\n",
|
| 249 |
+
" \"\"\"\n",
|
| 250 |
+
" source_vector_length = -1\n",
|
| 251 |
+
" target_vector_length = -1\n",
|
| 252 |
+
" \n",
|
| 253 |
+
" if use_dataset_max_lengths:\n",
|
| 254 |
+
" source_vector_length = self.max_source_length + 2\n",
|
| 255 |
+
" target_vector_length = self.max_target_length + 1\n",
|
| 256 |
+
" \n",
|
| 257 |
+
" source_indices = self._get_source_indices(source_text)\n",
|
| 258 |
+
" source_vector = self._vectorize(source_indices, \n",
|
| 259 |
+
" vector_length=source_vector_length, \n",
|
| 260 |
+
" mask_index=self.source_vocab.mask_index)\n",
|
| 261 |
+
" \n",
|
| 262 |
+
" target_x_indices, target_y_indices = self._get_target_indices(target_text)\n",
|
| 263 |
+
" target_x_vector = self._vectorize(target_x_indices,\n",
|
| 264 |
+
" vector_length=target_vector_length,\n",
|
| 265 |
+
" mask_index=self.target_vocab.mask_index)\n",
|
| 266 |
+
" target_y_vector = self._vectorize(target_y_indices,\n",
|
| 267 |
+
" vector_length=target_vector_length,\n",
|
| 268 |
+
" mask_index=self.target_vocab.mask_index)\n",
|
| 269 |
+
" return {\"source_vector\": source_vector, \n",
|
| 270 |
+
" \"target_x_vector\": target_x_vector, \n",
|
| 271 |
+
" \"target_y_vector\": target_y_vector, \n",
|
| 272 |
+
" \"source_length\": len(source_indices)}\n",
|
| 273 |
+
" \n",
|
| 274 |
+
" @classmethod\n",
|
| 275 |
+
" def from_dataframe(cls, bitext_df):\n",
|
| 276 |
+
" \"\"\"Instantiate the vectorizer from the dataset dataframe\n",
|
| 277 |
+
" \n",
|
| 278 |
+
" Args:\n",
|
| 279 |
+
" bitext_df (pandas.DataFrame): the parallel text dataset\n",
|
| 280 |
+
" Returns:\n",
|
| 281 |
+
" an instance of the NMTVectorizer\n",
|
| 282 |
+
" \"\"\"\n",
|
| 283 |
+
" source_vocab = SequenceVocabulary()\n",
|
| 284 |
+
" target_vocab = SequenceVocabulary()\n",
|
| 285 |
+
" \n",
|
| 286 |
+
" max_source_length = 50\n",
|
| 287 |
+
" max_target_length = 25\n",
|
| 288 |
+
"\n",
|
| 289 |
+
" for _, row in bitext_df.iterrows():\n",
|
| 290 |
+
" source_tokens = row[\"source_language\"].split(\" \")\n",
|
| 291 |
+
" if len(source_tokens) > max_source_length:\n",
|
| 292 |
+
" max_source_length = len(source_tokens)\n",
|
| 293 |
+
" for token in source_tokens:\n",
|
| 294 |
+
" source_vocab.add_token(token)\n",
|
| 295 |
+
" \n",
|
| 296 |
+
" target_tokens = row[\"target_language\"].split(\" \")\n",
|
| 297 |
+
" if len(target_tokens) > max_target_length:\n",
|
| 298 |
+
" max_target_length = len(target_tokens)\n",
|
| 299 |
+
" for token in target_tokens:\n",
|
| 300 |
+
" target_vocab.add_token(token)\n",
|
| 301 |
+
" \n",
|
| 302 |
+
" return cls(source_vocab, target_vocab, max_source_length, max_target_length)\n",
|
| 303 |
+
"\n",
|
| 304 |
+
" @classmethod\n",
|
| 305 |
+
" def from_serializable(cls, contents):\n",
|
| 306 |
+
" source_vocab = SequenceVocabulary.from_serializable(contents[\"source_vocab\"])\n",
|
| 307 |
+
" target_vocab = SequenceVocabulary.from_serializable(contents[\"target_vocab\"])\n",
|
| 308 |
+
" \n",
|
| 309 |
+
" return cls(source_vocab=source_vocab, \n",
|
| 310 |
+
" target_vocab=target_vocab, \n",
|
| 311 |
+
" max_source_length=contents[\"max_source_length\"], \n",
|
| 312 |
+
" max_target_length=contents[\"max_target_length\"])\n",
|
| 313 |
+
"\n",
|
| 314 |
+
" def to_serializable(self):\n",
|
| 315 |
+
" return {\"source_vocab\": self.source_vocab.to_serializable(), \n",
|
| 316 |
+
" \"target_vocab\": self.target_vocab.to_serializable(), \n",
|
| 317 |
+
" \"max_source_length\": self.max_source_length,\n",
|
| 318 |
+
" \"max_target_length\": self.max_target_length}\n",
|
| 319 |
+
" \n",
|
| 320 |
+
"\n",
|
| 321 |
+
"\n",
|
| 322 |
+
"\n",
|
| 323 |
+
"\n",
|
| 324 |
+
"class NMTDataset(Dataset):\n",
|
| 325 |
+
" def __init__(self, text_df, vectorizer):\n",
|
| 326 |
+
" \"\"\"\n",
|
| 327 |
+
" Args:\n",
|
| 328 |
+
" surname_df (pandas.DataFrame): the dataset\n",
|
| 329 |
+
" vectorizer (SurnameVectorizer): vectorizer instatiated from dataset\n",
|
| 330 |
+
" \"\"\"\n",
|
| 331 |
+
" self.text_df = text_df\n",
|
| 332 |
+
" self._vectorizer = vectorizer\n",
|
| 333 |
+
"\n",
|
| 334 |
+
" self.train_df = self.text_df[self.text_df.split=='train']\n",
|
| 335 |
+
" self.train_size = len(self.train_df)\n",
|
| 336 |
+
"\n",
|
| 337 |
+
" self.val_df = self.text_df[self.text_df.split=='val']\n",
|
| 338 |
+
" self.validation_size = len(self.val_df)\n",
|
| 339 |
+
"\n",
|
| 340 |
+
" self.test_df = self.text_df[self.text_df.split=='test']\n",
|
| 341 |
+
" self.test_size = len(self.test_df)\n",
|
| 342 |
+
"\n",
|
| 343 |
+
" self._lookup_dict = {'train': (self.train_df, self.train_size),\n",
|
| 344 |
+
" 'val': (self.val_df, self.validation_size),\n",
|
| 345 |
+
" 'test': (self.test_df, self.test_size)}\n",
|
| 346 |
+
"\n",
|
| 347 |
+
" self.set_split('train')\n",
|
| 348 |
+
"\n",
|
| 349 |
+
" @classmethod\n",
|
| 350 |
+
" def load_dataset_and_make_vectorizer(cls, dataset_csv):\n",
|
| 351 |
+
" \"\"\"Load dataset and make a new vectorizer from scratch\n",
|
| 352 |
+
" \n",
|
| 353 |
+
" Args:\n",
|
| 354 |
+
" surname_csv (str): location of the dataset\n",
|
| 355 |
+
" Returns:\n",
|
| 356 |
+
" an instance of SurnameDataset\n",
|
| 357 |
+
" \"\"\"\n",
|
| 358 |
+
" text_df = pd.read_csv(dataset_csv).fillna(' ')\n",
|
| 359 |
+
" train_subset = text_df[text_df.split=='train']\n",
|
| 360 |
+
" return cls(text_df, NMTVectorizer.from_dataframe(train_subset))\n",
|
| 361 |
+
"\n",
|
| 362 |
+
" @classmethod\n",
|
| 363 |
+
" def load_dataset_and_load_vectorizer(cls, dataset_csv, vectorizer_filepath):\n",
|
| 364 |
+
" \"\"\"Load dataset and the corresponding vectorizer. \n",
|
| 365 |
+
" Used in the case in the vectorizer has been cached for re-use\n",
|
| 366 |
+
" \n",
|
| 367 |
+
" Args:\n",
|
| 368 |
+
" surname_csv (str): location of the dataset\n",
|
| 369 |
+
" vectorizer_filepath (str): location of the saved vectorizer\n",
|
| 370 |
+
" Returns:\n",
|
| 371 |
+
" an instance of SurnameDataset\n",
|
| 372 |
+
" \"\"\"\n",
|
| 373 |
+
" text_df = pd.read_csv(dataset_csv).fillna(' ')\n",
|
| 374 |
+
" vectorizer = cls.load_vectorizer_only(vectorizer_filepath)\n",
|
| 375 |
+
" return cls(text_df, vectorizer)\n",
|
| 376 |
+
"\n",
|
| 377 |
+
" @staticmethod\n",
|
| 378 |
+
" def load_vectorizer_only(vectorizer_filepath):\n",
|
| 379 |
+
" \"\"\"a static method for loading the vectorizer from file\n",
|
| 380 |
+
" \n",
|
| 381 |
+
" Args:\n",
|
| 382 |
+
" vectorizer_filepath (str): the location of the serialized vectorizer\n",
|
| 383 |
+
" Returns:\n",
|
| 384 |
+
" an instance of SurnameVectorizer\n",
|
| 385 |
+
" \"\"\"\n",
|
| 386 |
+
" with open(vectorizer_filepath) as fp:\n",
|
| 387 |
+
" return NMTVectorizer.from_serializable(json.load(fp))\n",
|
| 388 |
+
"\n",
|
| 389 |
+
" def save_vectorizer(self, vectorizer_filepath):\n",
|
| 390 |
+
" \"\"\"saves the vectorizer to disk using json\n",
|
| 391 |
+
" \n",
|
| 392 |
+
" Args:\n",
|
| 393 |
+
" vectorizer_filepath (str): the location to save the vectorizer\n",
|
| 394 |
+
" \"\"\"\n",
|
| 395 |
+
" with open(vectorizer_filepath, \"w\") as fp:\n",
|
| 396 |
+
" json.dump(self._vectorizer.to_serializable(), fp)\n",
|
| 397 |
+
"\n",
|
| 398 |
+
" def get_vectorizer(self):\n",
|
| 399 |
+
" \"\"\" returns the vectorizer \"\"\"\n",
|
| 400 |
+
" return self._vectorizer\n",
|
| 401 |
+
"\n",
|
| 402 |
+
" def set_split(self, split=\"train\"):\n",
|
| 403 |
+
" self._target_split = split\n",
|
| 404 |
+
" self._target_df, self._target_size = self._lookup_dict[split]\n",
|
| 405 |
+
"\n",
|
| 406 |
+
" def __len__(self):\n",
|
| 407 |
+
" return self._target_size\n",
|
| 408 |
+
"\n",
|
| 409 |
+
" def __getitem__(self, index):\n",
|
| 410 |
+
" \"\"\"the primary entry point method for PyTorch datasets\n",
|
| 411 |
+
" \n",
|
| 412 |
+
" Args:\n",
|
| 413 |
+
" index (int): the index to the data point \n",
|
| 414 |
+
" Returns:\n",
|
| 415 |
+
" a dictionary holding the data point: (x_data, y_target, class_index)\n",
|
| 416 |
+
" \"\"\"\n",
|
| 417 |
+
" row = self._target_df.iloc[index]\n",
|
| 418 |
+
"\n",
|
| 419 |
+
" vector_dict = self._vectorizer.vectorize(row.source_language, row.target_language)\n",
|
| 420 |
+
"\n",
|
| 421 |
+
" return {\"x_source\": vector_dict[\"source_vector\"], \n",
|
| 422 |
+
" \"x_target\": vector_dict[\"target_x_vector\"],\n",
|
| 423 |
+
" \"y_target\": vector_dict[\"target_y_vector\"], \n",
|
| 424 |
+
" \"x_source_length\": vector_dict[\"source_length\"]}\n",
|
| 425 |
+
" \n",
|
| 426 |
+
" def get_num_batches(self, batch_size):\n",
|
| 427 |
+
" \"\"\"Given a batch size, return the number of batches in the dataset\n",
|
| 428 |
+
" \n",
|
| 429 |
+
" Args:\n",
|
| 430 |
+
" batch_size (int)\n",
|
| 431 |
+
" Returns:\n",
|
| 432 |
+
" number of batches in the dataset\n",
|
| 433 |
+
" \"\"\"\n",
|
| 434 |
+
" return len(self) // batch_size\n",
|
| 435 |
+
" \n",
|
| 436 |
+
"\n",
|
| 437 |
+
"\n",
|
| 438 |
+
"\n",
|
| 439 |
+
"def generate_nmt_batches(dataset, batch_size, shuffle=True, \n",
|
| 440 |
+
" drop_last=True, device=\"cpu\"):\n",
|
| 441 |
+
" \"\"\"A generator function which wraps the PyTorch DataLoader. The NMT Version \"\"\"\n",
|
| 442 |
+
" dataloader = DataLoader(dataset=dataset, batch_size=batch_size,\n",
|
| 443 |
+
" shuffle=shuffle, drop_last=drop_last)\n",
|
| 444 |
+
"\n",
|
| 445 |
+
" for data_dict in dataloader:\n",
|
| 446 |
+
" lengths = data_dict['x_source_length'].numpy()\n",
|
| 447 |
+
" # Get the indices according to sorted length\n",
|
| 448 |
+
" sorted_length_indices = lengths.argsort()[::-1].tolist()\n",
|
| 449 |
+
" \n",
|
| 450 |
+
" # Sort the minibatch\n",
|
| 451 |
+
" out_data_dict = {}\n",
|
| 452 |
+
" for name, tensor in data_dict.items():\n",
|
| 453 |
+
" out_data_dict[name] = data_dict[name][sorted_length_indices].to(device)\n",
|
| 454 |
+
" yield out_data_dict\n",
|
| 455 |
+
"\n",
|
| 456 |
+
"\n",
|
| 457 |
+
"\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"class PositionalEncoding(nn.Module):\n",
|
| 460 |
+
" def __init__(self, emb_size, drop_out, max_len:int = 200):\n",
|
| 461 |
+
" super(PositionalEncoding, self).__init__()\n",
|
| 462 |
+
" den = torch.exp(-torch.arange(0, emb_size,2)*math.log(10000)/emb_size)\n",
|
| 463 |
+
" pos = torch.arange(0,max_len).reshape(max_len,1)\n",
|
| 464 |
+
" pos_embedding = torch.zeros((max_len, emb_size))\n",
|
| 465 |
+
" pos_embedding[:,0::2]= torch.sin(pos*den)\n",
|
| 466 |
+
" pos_embedding[:,1::2] = torch.cos(pos*den)\n",
|
| 467 |
+
" pos_embedding = pos_embedding.unsqueeze(-2)\n",
|
| 468 |
+
" self.dropout = nn.Dropout(drop_out)\n",
|
| 469 |
+
" self.register_buffer('pos_embedding', pos_embedding)\n",
|
| 470 |
+
"\n",
|
| 471 |
+
" def forward(self, token_embedding:Tensor):\n",
|
| 472 |
+
" return self.dropout(token_embedding + self.pos_embedding[:token_embedding.size(0),:])\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"class TokenEmbedding(nn.Module):\n",
|
| 475 |
+
" def __init__(self, vocab_size:int, emb_size):\n",
|
| 476 |
+
" super(TokenEmbedding, self).__init__()\n",
|
| 477 |
+
" self.embedding = nn.Embedding(vocab_size, emb_size)\n",
|
| 478 |
+
" self.emb_size = emb_size\n",
|
| 479 |
+
"\n",
|
| 480 |
+
" def forward(self, tokens:Tensor):\n",
|
| 481 |
+
" return self.embedding(tokens.long())*math.sqrt(self.emb_size)\n",
|
| 482 |
+
"\n",
|
| 483 |
+
"\n",
|
| 484 |
+
"class Seq2SeqTransformer(nn.Module):\n",
|
| 485 |
+
" def __init__(self, num_encoder_layers,num_decoder_layers, emb_size, nhead,src_vocab_size,tgt_vocab_size, dim_feedforward = 512, dropout = 0.1):\n",
|
| 486 |
+
" super(Seq2SeqTransformer,self).__init__()\n",
|
| 487 |
+
" self.transformer = Transformer(d_model = emb_size, nhead = nhead, num_encoder_layers = num_encoder_layers, num_decoder_layers = num_decoder_layers, dim_feedforward = dim_feedforward, dropout = dropout, norm_first = True)\n",
|
| 488 |
+
" self.generator = nn.Linear(emb_size, tgt_vocab_size)\n",
|
| 489 |
+
" self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)\n",
|
| 490 |
+
" self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)\n",
|
| 491 |
+
" self.positional_encoding = PositionalEncoding(emb_size, drop_out = dropout)\n",
|
| 492 |
+
"\n",
|
| 493 |
+
" def forward(self, src:Tensor, trg:Tensor, src_mask:Tensor, tgt_mask: Tensor, src_padding_mask: Tensor, tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor):\n",
|
| 494 |
+
" src_emb = self.positional_encoding(self.src_tok_emb(src))\n",
|
| 495 |
+
" tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))\n",
|
| 496 |
+
" outs = self.transformer(src_emb, tgt_emb, src_mask, tgt_mask, None, src_padding_mask, tgt_padding_mask, memory_key_padding_mask)\n",
|
| 497 |
+
" return self.generator(outs)\n",
|
| 498 |
+
"\n",
|
| 499 |
+
" def encode(self, src, src_mask):\n",
|
| 500 |
+
" return self.transformer.encoder(self.positional_encoding(self.src_tok_emb(src)),src_mask)\n",
|
| 501 |
+
"\n",
|
| 502 |
+
" def decode(self, tgt:Tensor, memory:Tensor, tgt_mask:Tensor):\n",
|
| 503 |
+
" return self.transformer.decoder(self.positional_encoding(self.tgt_tok_emb(tgt)), memory, tgt_mask)\n",
|
| 504 |
+
"\n",
|
| 505 |
+
"\n",
|
| 506 |
+
"\n",
|
| 507 |
+
"\n",
|
| 508 |
+
"\n",
|
| 509 |
+
"\n",
|
| 510 |
+
"def set_seed_everywhere(seed, cuda):\n",
|
| 511 |
+
" #seed = self.seed\n",
|
| 512 |
+
" #cuda = self.cuda\n",
|
| 513 |
+
" np.random.seed(seed)\n",
|
| 514 |
+
" torch.manual_seed(seed)\n",
|
| 515 |
+
" print(seed)\n",
|
| 516 |
+
" if cuda:\n",
|
| 517 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
| 518 |
+
"\n",
|
| 519 |
+
"\n",
|
| 520 |
+
"def generate_square_subsequent_mask(sz):\n",
|
| 521 |
+
" mask = (torch.triu(torch.ones((sz, sz), device=DEVICE)) == 1).transpose(0, 1)\n",
|
| 522 |
+
" mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))\n",
|
| 523 |
+
" return mask\n",
|
| 524 |
+
"\n",
|
| 525 |
+
"\n",
|
| 526 |
+
"\n",
|
| 527 |
+
"def handle_dirs(save_dirs):\n",
|
| 528 |
+
" dirpath = save_dir\n",
|
| 529 |
+
" if not os.path.exists(dirpath):\n",
|
| 530 |
+
" os.makedirs(dirpath)\n",
|
| 531 |
+
"\n",
|
| 532 |
+
"\n",
|
| 533 |
+
"\n",
|
| 534 |
+
"def create_mask(src, tgt,PAD_IDX):\n",
|
| 535 |
+
" src_seq_len = src.shape[0]\n",
|
| 536 |
+
" tgt_seq_len = tgt.shape[0]\n",
|
| 537 |
+
" \n",
|
| 538 |
+
" tgt_mask = generate_square_subsequent_mask(tgt_seq_len)\n",
|
| 539 |
+
" src_mask = torch.zeros((src_seq_len, src_seq_len),device=DEVICE).type(torch.bool)\n",
|
| 540 |
+
" \n",
|
| 541 |
+
" src_padding_mask = (src == PAD_IDX).transpose(0, 1)\n",
|
| 542 |
+
" tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)\n",
|
| 543 |
+
" return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask\n",
|
| 544 |
+
"\n",
|
| 545 |
+
"\n",
|
| 546 |
+
"\n",
|
| 547 |
+
"def train_epoch(batch_size, device, model, dataset, split_value, optimizer, PAD_IDX, loss_fn):\n",
|
| 548 |
+
" BATCH_SIZE = batch_size\n",
|
| 549 |
+
" model.train()\n",
|
| 550 |
+
" losses = 0\n",
|
| 551 |
+
" print(dataset.__len__())\n",
|
| 552 |
+
" train_dataloader = DataLoader(dataset, batch_size=BATCH_SIZE)\n",
|
| 553 |
+
" #print(BATCH_SIZE,len(list(train_dataloader)))\n",
|
| 554 |
+
" dataset.set_split(split_value)\n",
|
| 555 |
+
" batch_generator = generate_nmt_batches(dataset, batch_size=BATCH_SIZE, device = device)\n",
|
| 556 |
+
" print(\"printing batch generator\",batch_generator)\n",
|
| 557 |
+
" ctr = 0\n",
|
| 558 |
+
" for batch_index, batch_dict in enumerate(batch_generator):\n",
|
| 559 |
+
" ctr = ctr+1\n",
|
| 560 |
+
" #optimizer.zero_grad()\n",
|
| 561 |
+
" #print(torch.cat((torch.transpose(batch_dict['x_source'],0,1),torch.transpose(batch_dict['x_target'],0,1),torch.transpose(batch_dict['y_target'],0,1)),1).numpy().shape)\n",
|
| 562 |
+
" #print(torch.transpose(batch_dict['x_target'],0,1))\n",
|
| 563 |
+
" #print(torch.transpose(batch_dict['y_target'],0,1))\n",
|
| 564 |
+
" src=torch.transpose(batch_dict['x_source'],0,1)\n",
|
| 565 |
+
" tgt=torch.transpose(batch_dict['y_target'],0,1)\n",
|
| 566 |
+
" tgt_input = tgt[:-1,:]\n",
|
| 567 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src,tgt_input, PAD_IDX)\n",
|
| 568 |
+
" logits = model(src,tgt_input, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
| 569 |
+
" optimizer.zero_grad()\n",
|
| 570 |
+
" tgt_out = tgt[1:,:]\n",
|
| 571 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]),tgt_out.reshape(-1))\n",
|
| 572 |
+
" loss.backward()\n",
|
| 573 |
+
" optimizer.step()\n",
|
| 574 |
+
" losses += loss.item()\n",
|
| 575 |
+
" if ctr%50==0:\n",
|
| 576 |
+
" #print('source_shape',src.shape, 'target_shape',tgt.shape)\n",
|
| 577 |
+
" print(\"ctr: \",ctr,\" losses: \",losses/ctr,'time',datetime.datetime.now())#,\" len_train_dataloader: \",len(list(train_dataloader)))\n",
|
| 578 |
+
" return losses/len(list(train_dataloader))\n",
|
| 579 |
+
"\n",
|
| 580 |
+
"\n",
|
| 581 |
+
"def evaluate(batch_size,device,model, dataset,split_value,PAD_IDX,loss_fn):\n",
|
| 582 |
+
" model.eval()\n",
|
| 583 |
+
" losses = 0\n",
|
| 584 |
+
" dataset.set_split(split_value)\n",
|
| 585 |
+
" val_dataloader=DataLoader(dataset, batch_size=batch_size)\n",
|
| 586 |
+
" batch_generator=generate_nmt_batches(dataset, batch_size=batch_size, device=device)\n",
|
| 587 |
+
" ctr = 0\n",
|
| 588 |
+
" for batch_index, batch_dict in enumerate(batch_generator):\n",
|
| 589 |
+
" src = torch.transpose(batch_dict['x_source'],0,1)\n",
|
| 590 |
+
" tgt = torch.transpose(batch_dict['y_target'],0,1)\n",
|
| 591 |
+
" tgt_input = tgt[:-1,:]\n",
|
| 592 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src,tgt_input, PAD_IDX)\n",
|
| 593 |
+
" logits = model(src,tgt_input,src_mask,tgt_mask, src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
| 594 |
+
" tgt_out=tgt[1:,:]\n",
|
| 595 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]),tgt_out.reshape(-1))#loss_fn(logits.reshape[-1],tgt_out.reshape[-1])\n",
|
| 596 |
+
" losses += loss.item()\n",
|
| 597 |
+
" ctr = ctr+1\n",
|
| 598 |
+
" print(ctr,\"validation\",losses/ctr)\n",
|
| 599 |
+
"\n",
|
| 600 |
+
" \"\"\"for src, tgt in val_dataloader:\n",
|
| 601 |
+
" src = src.to(DEVICE)\n",
|
| 602 |
+
" tgt = tgt.to(DEVICE)\n",
|
| 603 |
+
"\n",
|
| 604 |
+
" tgt_input = tgt[:-1, :]\n",
|
| 605 |
+
"\n",
|
| 606 |
+
" src_mask, tgt_mask, src_padding_mask, tgt_padding_mask = create_mask(src, tgt_input)\n",
|
| 607 |
+
"\n",
|
| 608 |
+
" logits = model(src, tgt_input, src_mask, tgt_mask,src_padding_mask, tgt_padding_mask, src_padding_mask)\n",
|
| 609 |
+
"\n",
|
| 610 |
+
" tgt_out = tgt[1:, :]\n",
|
| 611 |
+
" loss = loss_fn(logits.reshape(-1, logits.shape[-1]), tgt_out.reshape(-1))\n",
|
| 612 |
+
" losses += loss.item()\"\"\"\n",
|
| 613 |
+
" return losses/len(list(val_dataloader))\n",
|
| 614 |
+
"\n",
|
| 615 |
+
"\n",
|
| 616 |
+
"\n",
|
| 617 |
+
"def greedy_decode(DEVICE, model, src, src_mask, max_len, start_symbol, EOS_IDX):\n",
|
| 618 |
+
" src = src.to(DEVICE)\n",
|
| 619 |
+
" src_mask=src_mask.to(DEVICE)\n",
|
| 620 |
+
" memory = model.encode(src, src_mask)\n",
|
| 621 |
+
" ys = torch.ones(1,1).fill_(start_symbol).type(torch.long).to(DEVICE)\n",
|
| 622 |
+
" for i in range(max_len):\n",
|
| 623 |
+
" #print(i,'ys',ys)\n",
|
| 624 |
+
" memory = memory.to(DEVICE)\n",
|
| 625 |
+
" tgt_mask = (generate_square_subsequent_mask(ys.size(0)).type(torch.bool)).to(DEVICE)\n",
|
| 626 |
+
" #print('tgt_mask',tgt_mask)\n",
|
| 627 |
+
" out = model.decode(ys,memory, tgt_mask)#.squeeze()\n",
|
| 628 |
+
" #print(\"out\",out,'out_shape',out.shape)\n",
|
| 629 |
+
" out = out.transpose(0,1)\n",
|
| 630 |
+
" #print(\"out transpose\",out,'out_transpose_shape',out.shape)\n",
|
| 631 |
+
" prob = model.generator(out)[:,-1]\n",
|
| 632 |
+
" _, next_word = torch.max(prob, dim=1)\n",
|
| 633 |
+
" next_word = next_word.item()\n",
|
| 634 |
+
" #print('next_word = ',next_word)\n",
|
| 635 |
+
" ys = torch.cat([ys, torch.ones(1,1).type_as(src.data).fill_(next_word)], dim = 0)\n",
|
| 636 |
+
" #print('ys',ys)\n",
|
| 637 |
+
" if next_word == EOS_IDX:\n",
|
| 638 |
+
" break\n",
|
| 639 |
+
" return ys\n",
|
| 640 |
+
"\n",
|
| 641 |
+
"\n",
|
| 642 |
+
"\n",
|
| 643 |
+
"def translate( device,model:torch.nn.Module, src_sentence:str, BOS_IDX, EOS_IDX):\n",
|
| 644 |
+
" model.eval()\n",
|
| 645 |
+
" src= src_sentence\n",
|
| 646 |
+
" #print('src',src)\n",
|
| 647 |
+
" num_tokens = src.shape[0]\n",
|
| 648 |
+
" #print(num_tokens)\n",
|
| 649 |
+
" src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)\n",
|
| 650 |
+
" #print('src_mask',src_mask)\n",
|
| 651 |
+
" tgt_tokens = greedy_decode(device,model, src, src_mask, max_len = num_tokens, start_symbol=BOS_IDX, EOS_IDX=EOS_IDX).flatten()\n",
|
| 652 |
+
" return tgt_tokens\n",
|
| 653 |
+
"\n",
|
| 654 |
+
"\n",
|
| 655 |
+
"\n",
|
| 656 |
+
"\n",
|
| 657 |
+
"\n",
|
| 658 |
+
"\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"\n",
|
| 661 |
+
"\n",
|
| 662 |
+
"\n",
|
| 663 |
+
"\n",
|
| 664 |
+
"\n",
|
| 665 |
+
"\n",
|
| 666 |
+
"\n",
|
| 667 |
+
"\n",
|
| 668 |
+
"\n",
|
| 669 |
+
"input_df = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
| 670 |
+
"fpath = \"nmt_IITB_APE2\"\n",
|
| 671 |
+
"\n",
|
| 672 |
+
"\n",
|
| 673 |
+
"#dataset = NMTDataset.load_dataset_and_make_vectorizer('IITB_dataset_1.csv')\n",
|
| 674 |
+
"#dataset.save_vectorizer(\"vectorizer_transformer_3layer_IITB1mill.json\")\n",
|
| 675 |
+
"\n",
|
| 676 |
+
"\n",
|
| 677 |
+
"\n",
|
| 678 |
+
"#dataloader = DataLoader(dataset=dataset, batch_size=1024,shuffle=False, drop_last=True)\n",
|
| 679 |
+
"\n",
|
| 680 |
+
"dataset_csv = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
| 681 |
+
"vectorizer_file = 'vectorizer_APE_2.json'\n",
|
| 682 |
+
"print(vectorizer_file)\n",
|
| 683 |
+
"model_state_file = 'APE_2.pth'\n",
|
| 684 |
+
"save_dir = \"nmt_DG2_FFNN8192\"#'GenV1_Transforemer_1',\n",
|
| 685 |
+
"print(save_dir)\n",
|
| 686 |
+
"reload_from_files = True\n",
|
| 687 |
+
"cuda = False\n",
|
| 688 |
+
"seed = 13\n",
|
| 689 |
+
"learning_rate = 8e-3\n",
|
| 690 |
+
"batch_size = 1024\n",
|
| 691 |
+
"batch_size_val = 1\n",
|
| 692 |
+
"num_epochs = 40\n",
|
| 693 |
+
"source_embedding_size = 256\n",
|
| 694 |
+
"target_embedding_size = 256\n",
|
| 695 |
+
"encoding_size = 256\n",
|
| 696 |
+
"use_glove = False\n",
|
| 697 |
+
"expand_filepaths_to_save_dir = True\n",
|
| 698 |
+
"early_stopping_criteria = 10\n",
|
| 699 |
+
"dataset_to_evaluate = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
| 700 |
+
"path_to_save = 'APE_1_new.csv'\n",
|
| 701 |
+
"saved_model_path = 'APE_1_new.pt'\n",
|
| 702 |
+
"file_exist = 0\n",
|
| 703 |
+
"existing_file_name = 'dataset_for_APE_hinglish_to_english2.csv'\n",
|
| 704 |
+
"\n",
|
| 705 |
+
"\n",
|
| 706 |
+
"dataset_path = fpath\n",
|
| 707 |
+
"existing_file_name = input_df\n",
|
| 708 |
+
"fname = existing_file_name\n",
|
| 709 |
+
"dataset_csv = fname\n",
|
| 710 |
+
"\n",
|
| 711 |
+
"\n",
|
| 712 |
+
"\n",
|
| 713 |
+
"\n",
|
| 714 |
+
"\n",
|
| 715 |
+
"\n",
|
| 716 |
+
"model_state_file = model_state_file\n",
|
| 717 |
+
"save_dir = save_dir\n",
|
| 718 |
+
"print(save_dir)\n",
|
| 719 |
+
"reload_from_files = reload_from_files\n",
|
| 720 |
+
"expand_filepaths_to_save_dir = expand_filepaths_to_save_dir\n",
|
| 721 |
+
"cuda = cuda\n",
|
| 722 |
+
"seed = seed\n",
|
| 723 |
+
"learning_rate = learning_rate\n",
|
| 724 |
+
"batch_size = batch_size\n",
|
| 725 |
+
"batch_size_val = batch_size_val\n",
|
| 726 |
+
"num_epochs = num_epochs\n",
|
| 727 |
+
"early_stopping_criteria = True#self.early_stopping_criteria\n",
|
| 728 |
+
"source_embedding_size = source_embedding_size\n",
|
| 729 |
+
"target_embedding_size = target_embedding_size\n",
|
| 730 |
+
"encoding_size = encoding_size\n",
|
| 731 |
+
"use_glove = False\n",
|
| 732 |
+
"catch_keyboard_interrupt = True\n",
|
| 733 |
+
"if expand_filepaths_to_save_dir:\n",
|
| 734 |
+
" vectorizer_file = os.path.join(save_dir, vectorizer_file)\n",
|
| 735 |
+
"model_state_file = os.path.join(save_dir, model_state_file)\n",
|
| 736 |
+
"if not torch.cuda.is_available():\n",
|
| 737 |
+
" cuda = False\n",
|
| 738 |
+
"device = torch.device(\"cuda\" if cuda else \"cpu\")\n",
|
| 739 |
+
"set_seed_everywhere(seed,cuda)\n",
|
| 740 |
+
"handle_dirs(save_dir)\n",
|
| 741 |
+
"if reload_from_files and os.path.exists(vectorizer_file):\n",
|
| 742 |
+
" dataset = NMTDataset.load_dataset_and_load_vectorizer(dataset_csv, vectorizer_file)\n",
|
| 743 |
+
" print('load_dataset_and_load_vectorizer______')\n",
|
| 744 |
+
"else:\n",
|
| 745 |
+
" dataset = NMTDataset.load_dataset_and_make_vectorizer(dataset_csv)\n",
|
| 746 |
+
" dataset.save_vectorizer(vectorizer_file)\n",
|
| 747 |
+
" print('_________load_dataset_and_make_vectorizer______')\n",
|
| 748 |
+
"vectorizer = dataset.get_vectorizer()\n",
|
| 749 |
+
"PAD_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<MASK>']\n",
|
| 750 |
+
"BOS_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<BEGIN>']\n",
|
| 751 |
+
"EOS_IDX = vectorizer.to_serializable()['target_vocab']['token_to_idx']['<END>']\n",
|
| 752 |
+
"SRC_VOCAB_SIZE = len(vectorizer.to_serializable()['source_vocab']['token_to_idx'])\n",
|
| 753 |
+
"TGT_VOCAB_SiZE = len(vectorizer.to_serializable()['target_vocab']['token_to_idx'])\n",
|
| 754 |
+
"print('target vocab size',TGT_VOCAB_SiZE)\n",
|
| 755 |
+
"print('dataset_size 1: ', dataset.__len__(), dataset_path, dataset_csv)\n",
|
| 756 |
+
"print(' dataset csv length',len(pd.read_csv(dataset_csv)))\n",
|
| 757 |
+
"EMB_SIZE = 256\n",
|
| 758 |
+
"NHEAD = 16\n",
|
| 759 |
+
"FFN_HID_DIM =8192\n",
|
| 760 |
+
"BATCH_SIZE = 128\n",
|
| 761 |
+
"NUM_ENCODER_LAYERS = 3\n",
|
| 762 |
+
"NUM_DECODER_LAYERS = 3\n",
|
| 763 |
+
"batch_size = BATCH_SIZE\n",
|
| 764 |
+
"transformer = Seq2SeqTransformer(NUM_ENCODER_LAYERS, NUM_DECODER_LAYERS, EMB_SIZE, NHEAD, SRC_VOCAB_SIZE, TGT_VOCAB_SiZE, FFN_HID_DIM)\n",
|
| 765 |
+
"transformer = transformer.to(DEVICE)\n",
|
| 766 |
+
"loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)\n",
|
| 767 |
+
"optimizer = torch.optim.Adam(transformer.parameters(), lr=0.004, betas = (0.99, 0.99), eps = 1e-9)\n",
|
| 768 |
+
"from timeit import default_timer as timer\n",
|
| 769 |
+
"NUM_EPOCHS = num_epochs\n",
|
| 770 |
+
"for epoch in range(1, NUM_EPOCHS+1):\n",
|
| 771 |
+
" print(\"==================Training started==================\",epoch)\n",
|
| 772 |
+
" start_time = timer()\n",
|
| 773 |
+
" split_value_train = 'train'\n",
|
| 774 |
+
" split_value_validate = 'val'\n",
|
| 775 |
+
" train_loss = train_epoch(batch_size,device,transformer, dataset, split_value_train, optimizer, PAD_IDX, loss_fn)\n",
|
| 776 |
+
" end_time = timer()\n",
|
| 777 |
+
" torch.save(transformer,'epoch'+str(epoch)+'_APE_2_new.pt')\n",
|
| 778 |
+
"#torch.save(transformer, save_dir+\"/\"+saved_model_path+\"_epoch\")\n",
|
| 779 |
+
" #val_loss = evaluate(batch_size,device,transformer, dataset, split_value_validate, PAD_IDX, loss_fn)\n",
|
| 780 |
+
"torch.save(transformer, save_dir+\"/\"+saved_model_path)\n"
|
| 781 |
+
]
|
| 782 |
+
},
|
| 783 |
+
{
|
| 784 |
+
"cell_type": "code",
|
| 785 |
+
"execution_count": null,
|
| 786 |
+
"id": "37a50cf7-d754-4c19-aaa5-4e094cfd87e6",
|
| 787 |
+
"metadata": {},
|
| 788 |
+
"outputs": [],
|
| 789 |
+
"source": []
|
| 790 |
+
}
|
| 791 |
+
],
|
| 792 |
+
"metadata": {
|
| 793 |
+
"kernelspec": {
|
| 794 |
+
"display_name": "Python 3 (ipykernel)",
|
| 795 |
+
"language": "python",
|
| 796 |
+
"name": "python3"
|
| 797 |
+
},
|
| 798 |
+
"language_info": {
|
| 799 |
+
"codemirror_mode": {
|
| 800 |
+
"name": "ipython",
|
| 801 |
+
"version": 3
|
| 802 |
+
},
|
| 803 |
+
"file_extension": ".py",
|
| 804 |
+
"mimetype": "text/x-python",
|
| 805 |
+
"name": "python",
|
| 806 |
+
"nbconvert_exporter": "python",
|
| 807 |
+
"pygments_lexer": "ipython3",
|
| 808 |
+
"version": "3.11.9"
|
| 809 |
+
}
|
| 810 |
+
},
|
| 811 |
+
"nbformat": 4,
|
| 812 |
+
"nbformat_minor": 5
|
| 813 |
+
}
|
APR_tr2_2.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
english_tohinglish_reverse_translation.ipynb
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:175d23f7f9db046fae625862ab000225112c7880feee1ba5253988e190a32483
|
| 3 |
+
size 17700957
|
epoch40_APE_2_new.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3fe8bcad55ffa5eca1a1ef1b2fa7365a0810560d3a9574fa6c1b37427368925
|
| 3 |
+
size 112026355
|
epoch40_APE_2_new_reverse.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d655c309c0f03e479bbf8e2996aaa3959fb47e5800f6253d541653b04e2fce7
|
| 3 |
+
size 112028331
|