noise: type: loglinear sigma_min: 1e-4 sigma_max: 20 state_dependent: True mode: ppl_eval # train / ppl_eval / sample_eval diffusion: absorbing_state vocab: old_smiles # old_smiles / new_smiles / selfies / helm backbone: roformer # peptideclm / helmgpt / dit / roformer / finetune_roformer parameterization: subs # subs time_conditioning: False T: 0 # 0 (continuous time) / 1000 subs_masking: False seed: 42 mcts: num_children: 50 num_objectives: 5 topk: 100 mask_token: 4 num_iter: 128 sampling: 0 # 0 is gumbel sampling / > 0 samples children from top k probs invalid_penalty: 0.5 sample_prob: 1.0 perm: True dual: False single: False time_dependent: True lr_scheduler: _target_: transformers.get_constant_schedule_with_warmup num_warmup_steps: 2500 data: train: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-train.csv valid: /home/st512/peptune/scripts/peptide-mdlm-mcts/data/finetune2/30K-val.csv batchinohup ng: wrapping # padding / wrapping loader: global_batch_size: 64 eval_global_batch_size: ${.global_batch_size} # Note: batch_size and eval_batch_size are **per machine** batch_size: ${div_up:${.global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}} eval_batch_size: ${div_up:${.eval_global_batch_size}, ${eval:${trainer.devices} * ${trainer.num_nodes}}} num_workers: ${eval:"len(__import__('os').sched_getaffinity(0))"} pin_memory: True sampling: predictor: ddpm_cache # analytic, ddpm, ddpm_cache num_sequences: 100 sampling_eps: 1e-3 steps: 128 seq_length: 100 noise_removal: True num_sample_batches: 2 # Total samples: `num_gpus` * `loader.eval_batch_size` * num_sample_batches num_sample_log: 2 stride_length: 1 num_strides: 1 training: antithetic_sampling: True sampling_eps: 1e-3 focus_mask: False #dynamic_batching: True accumulator: False eval: checkpoint_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=10-step=156276.ckpt disable_ema: False compute_generative_perplexity: False perplexity_batch_size: 8 compute_perplexity_on_sanity: False gen_ppl_eval_model_name_or_path: gpt2-large # gpt2-large, meta-llama/Llama-2-7b-hf generate_samples: True generation_model: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/ optim: weight_decay: 0.075 lr: 3e-4 beta1: 0.9 beta2: 0.999 eps: 1e-8 pepclm: hidden_size: 768 cond_dim: 256 n_heads: 20 n_blocks: 4 dropout: 0.5 length: 512 #scale_by_sigma: True model: type: ddit hidden_size: 768 cond_dim: 128 length: 512 n_blocks: 12 n_heads: 12 scale_by_sigma: True dropout: 0.1 roformer: hidden_size: 768 n_layers: 8 n_heads: 8 max_position_embeddings: 1035 helmgpt: hidden_size: 256 embd_pdrop: 0.1 resid_pdrop: 0.1 attn_pdrop: 0.1 ff_dropout: 0. block_size: 140 n_layer: 8 n_heads: 8 trainer: _target_: lightning.Trainer accelerator: cuda num_nodes: 1 devices: ${device_count:} accumulate_grad_batches: ${div_up:${loader.global_batch_size}, ${eval:${trainer.devices} * ${loader.batch_size} * ${trainer.num_nodes}}} gradient_clip_val: 1.0 precision: 64-true num_sanity_val_steps: 2 max_epochs: 100 max_steps: 1_000_000 log_every_n_steps: 10 limit_train_batches: 1.0 # train on full dataset, can be used to toggle quick run limit_val_batches: 1.0 # validate on full dataset, can be used to toggle quick run #val_check_interval: 40 #954 check_val_every_n_epoch: 1 wandb: project: peptune notes: null group: null job_type: null name: sophia-tang id: ${.name}_nov12_set2 hydra: run: dir: ./${now:%Y.%m.%d}/ job: chdir: True checkpointing: # Use custom `save_dir` if, e.g., saving to S3 bucket, otherwise leave this parameter as is save_dir: ${cwd:} # Note: `checkpoints` path should correspond to `checkpoint_every_n_steps.dirpath` resume_from_ckpt: True resume_ckpt_path: /home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer/epoch=7-step=108225.ckpt callbacks: model_checkpoint: _target_: pytorch_lightning.callbacks.ModelCheckpoint every_n_epochs: 1 monitor: "val/nll" save_top_k: 10 mode: "min" dirpath: '/home/st512/peptune/scripts/peptide-mdlm-mcts/checkpoints/11M-old-tokenizer'