--- library_name: transformers base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: cwe-parent-vulnerability-classification-huggingface-CodeBERTa-small-v1 results: [] --- # cwe-parent-vulnerability-classification-huggingface-CodeBERTa-small-v1 This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3718 - Accuracy: 0.7753 - F1 Macro: 0.3835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 3.2521 | 1.0 | 25 | 3.3015 | 0.0112 | 0.0057 | | 3.037 | 2.0 | 50 | 3.2608 | 0.3258 | 0.1301 | | 3.0191 | 3.0 | 75 | 3.3140 | 0.3146 | 0.0568 | | 2.8876 | 4.0 | 100 | 3.2111 | 0.2472 | 0.2190 | | 2.7888 | 5.0 | 125 | 3.1305 | 0.2360 | 0.2394 | | 2.6762 | 6.0 | 150 | 3.1370 | 0.3146 | 0.1503 | | 2.5905 | 7.0 | 175 | 3.0446 | 0.3933 | 0.2144 | | 2.4173 | 8.0 | 200 | 2.9769 | 0.3933 | 0.1999 | | 2.2706 | 9.0 | 225 | 2.9704 | 0.3708 | 0.1825 | | 2.1355 | 10.0 | 250 | 2.9071 | 0.3820 | 0.2097 | | 2.0722 | 11.0 | 275 | 2.9189 | 0.4382 | 0.1855 | | 1.8111 | 12.0 | 300 | 2.7873 | 0.4157 | 0.2257 | | 1.7056 | 13.0 | 325 | 2.7584 | 0.4607 | 0.2217 | | 1.6693 | 14.0 | 350 | 2.7394 | 0.5169 | 0.2370 | | 1.496 | 15.0 | 375 | 2.6647 | 0.5506 | 0.2630 | | 1.3093 | 16.0 | 400 | 2.6477 | 0.5843 | 0.2644 | | 1.251 | 17.0 | 425 | 2.6355 | 0.6067 | 0.2654 | | 1.1316 | 18.0 | 450 | 2.5521 | 0.6404 | 0.3000 | | 1.049 | 19.0 | 475 | 2.5236 | 0.6404 | 0.2951 | | 0.9441 | 20.0 | 500 | 2.5538 | 0.6404 | 0.2957 | | 0.8752 | 21.0 | 525 | 2.5020 | 0.6742 | 0.3259 | | 0.7623 | 22.0 | 550 | 2.4927 | 0.6966 | 0.3339 | | 0.7938 | 23.0 | 575 | 2.4595 | 0.7079 | 0.3413 | | 0.6321 | 24.0 | 600 | 2.4564 | 0.7079 | 0.3369 | | 0.6245 | 25.0 | 625 | 2.4537 | 0.7191 | 0.3631 | | 0.5502 | 26.0 | 650 | 2.4470 | 0.7416 | 0.3764 | | 0.5805 | 27.0 | 675 | 2.4588 | 0.7528 | 0.3849 | | 0.5042 | 28.0 | 700 | 2.4243 | 0.7640 | 0.3930 | | 0.464 | 29.0 | 725 | 2.4051 | 0.7640 | 0.3930 | | 0.4349 | 30.0 | 750 | 2.4361 | 0.7753 | 0.4034 | | 0.4347 | 31.0 | 775 | 2.4062 | 0.7640 | 0.3906 | | 0.3953 | 32.0 | 800 | 2.3939 | 0.7753 | 0.3835 | | 0.3775 | 33.0 | 825 | 2.4091 | 0.7865 | 0.3958 | | 0.3948 | 34.0 | 850 | 2.4018 | 0.7865 | 0.3958 | | 0.348 | 35.0 | 875 | 2.3718 | 0.7753 | 0.3835 | | 0.3328 | 36.0 | 900 | 2.3843 | 0.7865 | 0.3947 | | 0.3291 | 37.0 | 925 | 2.3843 | 0.7978 | 0.3965 | | 0.3211 | 38.0 | 950 | 2.3764 | 0.7865 | 0.3958 | | 0.307 | 39.0 | 975 | 2.3822 | 0.7978 | 0.3975 | | 0.3055 | 40.0 | 1000 | 2.3855 | 0.7978 | 0.3965 | ### Framework versions - Transformers 4.55.4 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.2